Newtons threebody problem explained Fabio Pacucci

In 2009, two researchers ran
a simple experiment.

They took everything we know
about our solar system

and calculated where every planet would be
up to 5 billion years in the future.

To do so they ran over 2,000
numerical simulations

with the same exact initial conditions
except for one difference:

the distance between Mercury and the Sun,
modified by less than a millimeter

from one simulation to the next.

Shockingly, in about 1 percent
of their simulations,

Mercury’s orbit changed so drastically
that it could plunge into the Sun

or collide with Venus.

Worse yet,

in one simulation it destabilized
the entire inner solar system.

This was no error;
the astonishing variety in results

reveals the truth that our solar system
may be much less stable than it seems.

Astrophysicists refer to this astonishing
property of gravitational systems

as the n-body problem.

While we have equations
that can completely predict

the motions of two gravitating masses,

our analytical tools fall short
when faced with more populated systems.

It’s actually impossible to write down
all the terms of a general formula

that can exactly describe the motion
of three or more gravitating objects.

Why? The issue lies in how many unknown
variables an n-body system contains.

Thanks to Isaac Newton,
we can write a set of equations

to describe the gravitational force
acting between bodies.

However, when trying to find a general
solution for the unknown variables

in these equations,

we’re faced with
a mathematical constraint:

for each unknown,
there must be at least one equation

that independently describes it.

Initially, a two-body system appears
to have more unknown variables

for position and velocity
than equations of motion.

However, there’s a trick:

consider the relative position
and velocity of the two bodies

with respect to the center
of gravity of the system.

This reduces the number of unknowns
and leaves us with a solvable system.

With three or more orbiting objects
in the picture, everything gets messier.

Even with the same mathematical trick
of considering relative motions,

we’re left with more unknowns
than equations describing them.

There are simply too many variables
for this system of equations

to be untangled into a general solution.

But what does it actually look like
for objects in our universe

to move according to analytically
unsolvable equations of motion?

A system of three stars—
like Alpha Centauri—

could come crashing
into one another or, more likely,

some might get flung out of orbit
after a long time of apparent stability.

Other than a few highly improbable
stable configurations,

almost every possible case
is unpredictable on long timescales.

Each has an astronomically large range
of potential outcomes,

dependent on the tiniest of differences
in position and velocity.

This behaviour is known
as chaotic by physicists,

and is an important characteristic
of n-body systems.

Such a system is still deterministic—
meaning there’s nothing random about it.

If multiple systems start
from the exact same conditions,

they’ll always reach the same result.

But give one a little shove at the start,
and all bets are off.

That’s clearly relevant
for human space missions,

when complicated orbits need
to be calculated with great precision.

Thankfully, continuous advancements
in computer simulations

offer a number of ways
to avoid catastrophe.

By approximating the solutions
with increasingly powerful processors,

we can more confidently predict the motion
of n-body systems on long time-scales.

And if one body in a group
of three is so light

it exerts no significant force
on the other two,

the system behaves, with very good
approximation, as a two-body system.

This approach is known
as the “restricted three-body problem.”

It proves extremely useful
in describing, for example,

an asteroid in the Earth-Sun
gravitational field,

or a small planet in the field
of a black hole and a star.

As for our solar system,
you’ll be happy to hear

that we can have reasonable confidence
in its stability

for at least the next
several hundred million years.

Though if another star,

launched from across the galaxy,
is on its way to us,

all bets are off.

2009 年,两名研究人员进行
了一项简单的实验。

他们收集了我们所知道的
关于太阳系的所有信息,

并计算出每颗行星
在未来长达 50 亿年的位置。

为此,他们

在相同的初始条件下运行了 2,000 多次数值模拟,
除了一个差异:

水星和太阳之间的距离,

从一个模拟到下一个模拟修改了不到一毫米。

令人震惊的是,在他们大约 1
% 的模拟中,

水星的轨道发生了如此剧烈的变化,
以至于它可能会坠入太阳

或与金星相撞。

更糟糕的是,

在一次模拟中,它破坏
了整个内太阳系的稳定性。

这没有错误;
结果的惊人变化

揭示了一个事实,即我们的太阳系
可能远没有看起来那么稳定。

天体物理学家将
引力系统的这种惊人特性

称为 n 体问题。

虽然我们有
可以完全

预测两个引力质量运动的方程,但

在面对更多人口稠密的系统时,我们的分析工具却不尽如人意。

实际上不可能写出
一个

可以准确描述
三个或更多引力物体运动的通用公式的所有项。

为什么? 问题在于
一个 n 体系统包含多少未知变量。

感谢艾萨克·牛顿,
我们可以写出一组方程

来描述
物体之间作用的引力。

然而,当试图为这些方程
中的未知变量找到一个通解时

我们面临着
一个数学约束:

对于每个未知数
,必须至少有一个方程

可以独立地描述它。

最初,二体系统似乎
比运动方程具有更多

的位置和速度未知变量

但是,有一个技巧:

考虑
两个物体

相对于
系统重心的相对位置和速度。

这减少了未知数的数量,
并为我们留下了一个可解决的系统。

图片中有三个或更多的轨道
物体,一切都变得更加混乱。

即使使用相同的数学技巧
来考虑相对运动,

我们留下的未知数
比描述它们的方程还要多。

这个方程组的变量太多了

,无法解开成一个一般的解决方案。

但是
,我们宇宙中的物体

根据无法解析
的运动方程运动实际上是什么样子的呢?

一个由三颗恒星组成的系统——
比如半人马座阿尔法星——

可能会相互碰撞,
或者更有可能的是,在经过长时间的表面稳定后,

一些恒星可能会被抛离轨道

除了一些极不可能的
稳定配置之外,

几乎所有可能的情况
在长时间尺度上都是不可预测的。

每个都有天文数字
的潜在结果,

取决于
位置和速度的最小差异。

这种行为
被物理学家称为混沌,

是 n 体系统的一个重要特征。

这样的系统仍然是确定性的——
这意味着它没有任何随机性。

如果多个系统
从完全相同的条件开始,

它们总是会达到相同的结果。

但是在开始时给一个小推
,所有的赌注都被取消了。

这显然
与载人太空任务相关,

因为需要
非常精确地计算复杂的轨道。

值得庆幸的是,
计算机模拟的不断进步

提供了许多
避免灾难的方法。

通过
使用越来越强大的处理器来逼近解决方案,

我们可以更自信地预测
n 体系统在长时间尺度上的运动。

如果一组三个物体中的一个物体
非常轻,

它不会对另外两个物体施加很大的力
,那么

该系统的行为非常
近似,就像一个二体系统。

这种方法被
称为“受限三体问题”。

例如,它在描述

地球-太阳
引力

场中的小行星或
黑洞和恒星场中的小行星时被证明非常有用。

至于我们的太阳系,
你会很高兴

听到我们可以

对其至少在未来
几亿年的稳定性有合理的信心。

尽管如果另一颗

从银河系发射的恒星
正在向我们飞来,那么

所有的赌注都没有了。