The sonic boom problem Katerina Kaouri

Humans have been fascinated
with speed for ages.

The history of human progress
is one of ever-increasing velocity,

and one of the most important achievements
in this historical race

was the breaking of the sound barrier.

Not long after the first
successful airplane flights,

pilots were eager to push
their planes to go faster and faster.

But as they did so, increased turbulence

and large forces on the plane
prevented them from accelerating further.

Some tried to circumvent
the problem through risky dives,

often with tragic results.

Finally, in 1947, design improvements,

such as a movable horizontal stabilizer,
the all-moving tail,

allowed an American military pilot
named Chuck Yeager

to fly the Bell X-1 aircraft at 1127 km/h,

becoming the first person
to break the sound barrier

and travel faster than the speed of sound.

The Bell X-1 was the first of many
supersonic aircraft to follow,

with later designs reaching
speeds over Mach 3.

Aircraft traveling at supersonic speed
create a shock wave

with a thunder-like noise
known as a sonic boom,

which can cause distress to people
and animals below

or even damage buildings.

For this reason,

scientists around the world
have been looking at sonic booms,

trying to predict their path
in the atmosphere,

where they will land,
and how loud they will be.

To better understand
how scientists study sonic booms,

let’s start with some basics of sound.

Imagine throwing a small stone
in a still pond.

What do you see?

The stone causes waves
to travel in the water

at the same speed in every direction.

These circles that keep growing in radius
are called wave fronts.

Similarly, even though we cannot see it,

a stationary sound source,
like a home stereo,

creates sound waves traveling outward.

The speed of the waves depends on factors

like the altitude and temperature
of the air they move through.

At sea level, sound travels
at about 1225 km/h.

But instead of circles
on a two-dimensional surface,

the wave fronts
are now concentric spheres,

with the sound traveling along rays
perpendicular to these waves.

Now imagine a moving sound source,
such as a train whistle.

As the source keeps moving
in a certain direction,

the successive waves in front of it
will become bunched closer together.

This greater wave frequency is the cause
of the famous Doppler effect,

where approaching objects
sound higher pitched.

But as long as the source is moving
slower than the sound waves themselves,

they will remain nested within each other.

It’s when an object goes supersonic,
moving faster than the sound it makes,

that the picture changes dramatically.

As it overtakes sound waves
it has emitted,

while generating new ones from
its current position,

the waves are forced together,
forming a Mach cone.

No sound is heard
as it approaches an observer

because the object is traveling faster
than the sound it produces.

Only after the object has passed
will the observer hear the sonic boom.

Where the Mach cone meets the ground,
it forms a hyperbola,

leaving a trail known as the boom carpet
as it travels forward.

This makes it possible to determine
the area affected by a sonic boom.

What about figuring out how strong
a sonic boom will be?

This involves solving the famous
Navier-Stokes equations

to find the variation
of pressure in the air

due to the supersonic aircraft
flying through it.

This results in the pressure signature
known as the N-wave.

What does this shape mean?

Well, the sonic boom occurs
when there is a sudden change in pressure,

and the N-wave involves two booms:

one for the initial pressure rise
at the aircraft’s nose,

and another for when the tail passes,

and the pressure suddenly
returns to normal.

This causes a double boom,

but it is usually heard as a single boom
by human ears.

In practice, computer models
using these principles

can often predict the location
and intensity of sonic booms

for given atmospheric conditions
and flight trajectories,

and there is ongoing research
to mitigate their effects.

In the meantime, supersonic flight
over land remains prohibited.

So, are sonic booms a recent creation?

Not exactly.

While we try to find ways to silence them,

a few other animals have been
using sonic booms to their advantage.

The gigantic Diplodocus may have been
capable of cracking its tail

faster than sound, at over 1200 km/h,
possibly to deter predators.

Some types of shrimp can also create
a similar shock wave underwater,

stunning or even killing pray
at a distance

with just a snap of their oversized claw.

So while we humans
have made great progress

in our relentless pursuit of speed,

it turns out that nature was there first.

多年来,人类一直
对速度着迷。

人类进步的历史
是一部速度不断加快的历史,

而在这场历史竞赛中,最重要的成就
之一

就是突破了音障。

在第一次
成功的飞机飞行后不久,

飞行员急于推动
他们的飞机飞得越来越快。

但当他们这样做时,飞机上增加的湍流

和强大的力量
阻止了他们进一步加速。

有些人试图
通过冒险的潜水来规避这个问题,但

往往会带来悲惨的结果。

最后,在 1947 年,设计改进,

例如可移动的水平稳定器
,全移动尾翼,

让一位名叫查克耶格尔的美国军事飞行员

能够以 1127 公里/小时的速度驾驶贝尔 X-1 飞机,

成为第
一个打破 音障

和传播速度超过音速。

贝尔 X-1 是众多
超音速飞机中的第一架

,后来的设计达到
了 3 马赫以上的速度。

以超音速飞行的飞机会
产生一种冲击波,这种冲击波会产生一种被称为音爆

的雷鸣般的噪音

这可能会给乘客带来痛苦。
人和动物低于

甚至损坏建筑物。

出于这个原因,

世界各地的
科学家一直在研究音爆,

试图预测它们
在大气中的路径

、它们将降落的位置
以及它们的响度。

为了更好地
了解科学家如何研究音爆,

让我们从一些声音的基础知识开始。

想象一下
在静止的池塘里扔一块小石头。

你看到了什么?

石头使
波浪在水中

以相同的速度向各个方向传播。

这些半径不断增大的圆
称为波阵面。

同样,即使我们看不到它,

一个固定的声源,
如家庭音响,也会

产生向外传播的声波。

海浪的速度取决于它们穿过的空气

的高度和温度等因素

在海平面,声音
以大约 1225 公里/小时的速度传播。

但是,波前不再是
二维表面上的圆圈,

而是同心球体

,声音沿着
垂直于这些波的射线传播。

现在想象一个移动的声源,
比如火车的汽笛。

随着源不断
向某个方向移动,

它前面的连续波
将变得更紧密地聚集在一起。

这种更高的波频率
是著名的多普勒效应的原因,在这种效应中,

接近的物体
听起来音调更高。

但只要声源的移动
速度比声波本身慢,

它们就会相互嵌套。

当一个物体超音速,
比它发出的声音移动得更快时

,画面就会发生巨大变化。

当它超过
它发出的声波时,

在从当前位置产生新

声波的同时,声波被强制聚集在一起,
形成一个马赫锥。

当它接近观察者时不会听到声音,

因为物体的传播速度
比它产生的声音快。

只有在物体经过后,
观察者才会听到音爆。

在马赫锥与地面相遇的地方,
它形成一条双曲线,在向前行进时

留下一条被称为“繁荣地毯”的轨迹

这使得确定
受音爆影响的区域成为可能。

想知道音
爆的强度如何?

这涉及求解著名的
Navier-Stokes 方程,

以找出

由于超音速飞机
飞过而导致的空气压力变化。

这导致
称为 N 波的压力特征。

这个形状是什么意思?

那么音爆
是在压力突然变化的时候发生的,

而N波有两个爆:

一个是飞机机头的初始压力上升

,另一个是机尾经过

,压力突然
恢复正常的时候。 .

这会导致双响,

但人耳通常会听到单
响。

在实践中,
使用这些原理的计算机模型

通常可以

在给定的大气条件
和飞行轨迹下预测音爆的位置和强度,

并且正在进行研究
以减轻其影响。

与此同时,
仍然禁止在陆地上空进行超音速飞行。

那么,音爆是最近的产物吗?

不完全是。

当我们试图找到让它们沉默的方法时

,其他一些动物一直在
利用音爆来发挥自己的优势。

巨大的梁龙可能已经
能够

以超过 1200 公里/小时的速度以比声音更快的速度折断它的尾巴,
这可能是为了阻止捕食者。

某些类型的虾也可以
在水下产生类似的冲击波

,只需轻轻一拍它们超大的爪子,就可以在远处击晕甚至杀死祈祷。

因此,虽然我们人类

在对速度的不懈追求中取得了长足的进步,

但事实证明,大自然首先出现了。