5 challenges we could solve by designing new proteins David Baker

I’m going to tell you about the most
amazing machines in the world

and what we can now do with them.

Proteins,

some of which you see inside a cell here,

carry out essentially all the important
functions in our bodies.

Proteins digest your food,

contract your muscles,

fire your neurons

and power your immune system.

Everything that happens in biology –

almost –

happens because of proteins.

Proteins are linear chains
of building blocks called amino acids.

Nature uses an alphabet of 20 amino acids,

some of which have names
you may have heard of.

In this picture, for scale,
each bump is an atom.

Chemical forces between the amino acids
cause these long stringy molecules

to fold up into unique,
three-dimensional structures.

The folding process,

while it looks random,

is in fact very precise.

Each protein folds
to its characteristic shape each time,

and the folding process
takes just a fraction of a second.

And it’s the shapes of proteins

which enable them to carry out
their remarkable biological functions.

For example,

hemoglobin has a shape
in the lungs perfectly suited

for binding a molecule of oxygen.

When hemoglobin moves to your muscle,

the shape changes slightly

and the oxygen comes out.

The shapes of proteins,

and hence their remarkable functions,

are completely specified by the sequence
of amino acids in the protein chain.

In this picture, each letter
on top is an amino acid.

Where do these sequences come from?

The genes in your genome
specify the amino acid sequences

of your proteins.

Each gene encodes the amino acid
sequence of a single protein.

The translation between
these amino acid sequences

and the structures
and functions of proteins

is known as the protein folding problem.

It’s a very hard problem

because there’s so many different
shapes a protein can adopt.

Because of this complexity,

humans have only been able
to harness the power of proteins

by making very small changes
to the amino acid sequences

of the proteins we’ve found in nature.

This is similar to the process
that our Stone Age ancestors used

to make tools and other implements
from the sticks and stones

that we found in the world around us.

But humans did not learn to fly
by modifying birds.

(Laughter)

Instead, scientists, inspired by birds,
uncovered the principles of aerodynamics.

Engineers then used those principles
to design custom flying machines.

In a similar way,

we’ve been working for a number of years

to uncover the fundamental
principles of protein folding

and encoding those principles
in the computer program called Rosetta.

We made a breakthrough in recent years.

We can now design completely new proteins
from scratch on the computer.

Once we’ve designed the new protein,

we encode its amino acid sequence
in a synthetic gene.

We have to make a synthetic gene

because since the protein
is completely new,

there’s no gene in any organism on earth
which currently exists that encodes it.

Our advances in understanding
protein folding

and how to design proteins,

coupled with the decreasing cost
of gene synthesis

and the Moore’s law increase
in computing power,

now enable us to design
tens of thousands of new proteins,

with new shapes and new functions,

on the computer,

and encode each one of those
in a synthetic gene.

Once we have those synthetic genes,

we put them into bacteria

to program them to make
these brand-new proteins.

We then extract the proteins

and determine whether they function
as we designed them to

and whether they’re safe.

It’s exciting to be able
to make new proteins,

because despite the diversity in nature,

evolution has only sampled a tiny fraction
of the total number of proteins possible.

I told you that nature uses
an alphabet of 20 amino acids,

and a typical protein is a chain
of about 100 amino acids,

so the total number of possibilities
is 20 times 20 times 20, 100 times,

which is a number on the order
of 10 to the 130th power,

which is enormously more
than the total number of proteins

which have existed
since life on earth began.

And it’s this unimaginably large space

we can now explore
using computational protein design.

Now the proteins that exist on earth

evolved to solve the problems
faced by natural evolution.

For example, replicating the genome.

But we face new challenges today.

We live longer, so new
diseases are important.

We’re heating up and polluting the planet,

so we face a whole host
of ecological challenges.

If we had a million years to wait,

new proteins might evolve
to solve those challenges.

But we don’t have
millions of years to wait.

Instead, with computational
protein design,

we can design new proteins
to address these challenges today.

Our audacious idea is to bring
biology out of the Stone Age

through technological revolution
in protein design.

We’ve already shown
that we can design new proteins

with new shapes and functions.

For example, vaccines work
by stimulating your immune system

to make a strong response
against a pathogen.

To make better vaccines,

we’ve designed protein particles

to which we can fuse
proteins from pathogens,

like this blue protein here,
from the respiratory virus RSV.

To make vaccine candidates

that are literally bristling
with the viral protein,

we find that such vaccine candidates

produce a much stronger
immune response to the virus

than any previous vaccines
that have been tested.

This is important because RSV
is currently one of the leading causes

of infant mortality worldwide.

We’ve also designed new proteins
to break down gluten in your stomach

for celiac disease

and other proteins to stimulate
your immune system to fight cancer.

These advances are the beginning
of the protein design revolution.

We’ve been inspired by a previous
technological revolution:

the digital revolution,

which took place in large part
due to advances in one place,

Bell Laboratories.

Bell Labs was a place with an open,
collaborative environment,

and was able to attract top talent
from around the world.

And this led to a remarkable
string of innovations –

the transistor, the laser,
satellite communication

and the foundations of the internet.

Our goal is to build
the Bell Laboratories of protein design.

We are seeking to attract
talented scientists from around the world

to accelerate the protein
design revolution,

and we’ll be focusing
on five grand challenges.

First, by taking proteins from flu strains
from around the world

and putting them on top
of the designed protein particles

I showed you earlier,

we aim to make a universal flu vaccine,

one shot of which gives a lifetime
of protection against the flu.

The ability to design –

(Applause)

The ability to design
new vaccines on the computer

is important both to protect
against natural flu epidemics

and, in addition, intentional
acts of bioterrorism.

Second, we’re going far beyond
nature’s limited alphabet

of just 20 amino acids

to design new therapeutic candidates
for conditions such as chronic pain,

using an alphabet
of thousands of amino acids.

Third, we’re building
advanced delivery vehicles

to target existing medications
exactly where they need to go in the body.

For example, chemotherapy to a tumor

or gene therapies to the tissue
where gene repair needs to take place.

Fourth, we’re designing smart therapeutics
that can do calculations within the body

and go far beyond current medicines,

which are really blunt instruments.

For example, to target a small
subset of immune cells

responsible for an autoimmune disorder,

and distinguish them from the vast
majority of healthy immune cells.

Finally, inspired by remarkable
biological materials

such as silk, abalone shell,
tooth and others,

we’re designing new
protein-based materials

to address challenges in energy
and ecological issues.

To do all this,
we’re growing our institute.

We seek to attract energetic,
talented and diverse scientists

from around the world,
at all career stages,

to join us.

You can also participate
in the protein design revolution

through our online
folding and design game, “Foldit.”

And through our distributed
computing project, Rosetta@home,

which you can join from your laptop
or your Android smartphone.

Making the world a better place
through protein design is my life’s work.

I’m so excited about
what we can do together.

I hope you’ll join us,

and thank you.

(Applause and cheers)

我将告诉你
世界上最神奇的机器,

以及我们现在可以用它们做什么。

蛋白质,

其中一些你在这里的细胞内看到,

基本上执行
我们体内的所有重要功能。

蛋白质可以消化你的食物、

收缩你的肌肉、

激发你的神经元

并增强你的免疫系统。

生物学中发生的一切——

几乎——都是

因为蛋白质而发生的。

蛋白质是
称为氨基酸的结构单元的线性链。

Nature 使用由 20 种氨基酸组成的字母表,

其中一些氨基酸的名称
您可能听说过。

在这张图片中,对于比例,
每个凸起都是一个原子。

氨基酸之间的化学作用力
使这些长而细的

分子折叠成独特
的三维结构。

折叠过程

虽然看起来很随意,但

实际上非常精确。

每种蛋白质每次都折叠
成其特征形状

,折叠过程
只需几分之一秒。

正是蛋白质的形状

使它们能够发挥
其非凡的生物学功能。

例如,

血红蛋白
在肺中的形状非常

适合结合氧分子。

当血红蛋白移动到你的肌肉时

,形状会发生轻微变化

,氧气就会出来。

蛋白质的形状

以及它们的显着

功能完全由
蛋白质链中的氨基酸序列决定。

在这张图片中,
顶部的每个字母都是一个氨基酸。

这些序列从何而来?

基因组中的基因
指定了蛋白质的氨基酸序列

每个基因编码
单个蛋白质的氨基酸序列。

这些氨基酸序列


蛋白质结构和功能之间的翻译

被称为蛋白质折叠问题。

这是一个非常困难的问题,

因为
蛋白质可以采用多种不同的形状。

由于这种复杂性,

人类只能

通过对

我们在自然界中发现的蛋白质的氨基酸序列进行非常小的改变来利用蛋白质的力量。


类似于我们的石器时代祖先使用

我们在周围世界中发现的棍棒和石头制造工具和其他工具的过程。

但人类并没有
通过改造鸟类来学习飞行。

(笑声)

相反,科学家们受到鸟类的启发,
发现了空气动力学的原理。

然后,工程师们使用这些原理
来设计定制的飞行器。

以类似的方式,

我们多年来一直

致力于揭示
蛋白质折叠的基本原理,

并将这些原理编码
到名为 Rosetta 的计算机程序中。

近年来,我们取得了突破。

我们现在可以
在计算机上从头开始设计全新的蛋白质。

一旦我们设计出新的蛋白质,

我们就会在合成基因中编码它的氨基酸序列

我们必须制造一个合成基因,

因为由于这种蛋白质
是全新的,

因此地球上目前存在的任何生物中都没有
编码它的基因。

我们在理解
蛋白质折叠

和如何设计蛋白质方面取得了进展,

再加
上基因合成成本的降低

和摩尔定律提高
了计算能力,

现在使我们能够设计
成千上万种

具有新形状和新功能的新蛋白质

, 计算机,


在合成基因中编码每一个。

一旦我们有了这些合成基因,

我们就将它们放入细菌中,

对它们进行编程以制造
这些全新的蛋白质。

然后我们提取蛋白质

并确定它们是否
按照我们设计的方式发挥作用以及

它们是否安全。

能够制造新的蛋白质令人兴奋,

因为尽管自然界存在多样性,但

进化只对可能的蛋白质总数中的一小部分
进行了采样。

我告诉过你自然界使用
一个由20个氨基酸组成的字母表

,一个典型的蛋白质是一个
大约100个氨基酸的链,

所以可能性的总数
是20乘以20乘以20、100乘,

这是一个数量级
的数字 10 的 130 次方,

这比

地球生命开始以来存在的蛋白质总数要多得多。

我们现在可以
使用计算蛋白质设计来探索这个难以想象的大空间。

现在地球上存在的蛋白质

进化来解决
自然进化所面临的问题。

例如,复制基因组。

但我们今天面临着新的挑战。

我们的寿命更长,因此新
疾病很重要。

我们正在升温并污染地球,

因此我们面临着
一系列生态挑战。

如果我们有一百万年的等待时间,

新的蛋白质可能会进化
来解决这些挑战。

但我们没有
数百万年的时间等待。

相反,通过计算
蛋白质设计,

我们可以设计新的蛋白质
来应对当今的这些挑战。

我们大胆的想法是通过

蛋白质设计的技术革命将生物学带出石器时代。

我们已经
证明我们可以设计出

具有新形状和功能的新蛋白质。

例如,疫苗
通过刺激您的免疫系统

对病原体产生强烈反应
而起作用。

为了制造更好的疫苗,

我们设计了蛋白质

颗粒,我们可以将
病原体的蛋白质融合到其中,

就像这里的蓝色蛋白质,
来自呼吸道病毒 RSV。

为了制造

真正
充满病毒蛋白的

候选疫苗,我们发现此类候选疫苗

对病毒产生的免疫反应

比以前任何
经过测试的疫苗都要强得多。

这很重要,因为 RSV
目前是

全球婴儿死亡的主要原因之一。

我们还设计了新的蛋白质
来分解您胃中的麸质以

应对乳糜泻

和其他蛋白质,以刺激
您的免疫系统对抗癌症。

这些进步
是蛋白质设计革命的开始。

我们受到了之前的
技术革命的启发

:数字革命,

这在很大程度上
归功于

贝尔实验室的进步。

贝尔实验室是一个拥有开放、
协作环境的地方

,能够吸引
来自世界各地的顶尖人才。

这导致了一系列非凡
的创新

——晶体管、激光、
卫星通信

和互联网的基础。

我们的目标是
建立贝尔实验室的蛋白质设计。

我们正在寻求吸引
来自世界各地的有才华的科学家

来加速蛋白质
设计革命

,我们将专注
于五个重大挑战。

首先,通过从世界各地的流感病毒株中提取蛋白质

并将它们放在

我之前向您展示过的设计蛋白质颗粒之上,

我们的目标是制造一种通用流感疫苗,

一次注射可以
终生预防流感。

设计能力——

(掌声)

在计算机上设计新疫苗的能力

对于
防止自然流感流行


生物恐怖主义的故意行为都很重要。

其次,我们正在远远超越
自然界

仅有的 20 个氨基酸的有限字母表,使用包含数千个氨基酸的字母表

来设计
针对慢性疼痛等疾病的新治疗候选者

第三,我们正在建造
先进的运载工具,

以将现有药物
准确定位到它们需要进入体内的位置。

例如,对肿瘤进行化学

疗法或
对需要进行基因修复的组织进行基因疗法。

第四,我们正在设计智能疗法
,可以在体内进行计算

,远远超出目前的药物,

这些药物真的是钝器。

例如,

针对导致自身免疫性疾病的一小部分免疫细胞,

并将它们与
绝大多数健康免疫细胞区分开来。

最后,受到

丝绸、鲍鱼壳、
牙齿等非凡生物材料的启发,

我们正在设计新
的基于蛋白质的材料,

以应对能源
和生态问题的挑战。

为了做到这一切,
我们正在发展我们的研究所。

我们力求吸引来自世界各地各个职业阶段的充满活力、
才华横溢和多元化的科学家

加入我们。

您还可以

通过我们的在线
折叠和设计游戏“Foldit”参与蛋白质设计革命。

通过我们的分布式
计算项目 Rosetta@home

,您可以通过笔记本电脑
或 Android 智能手机加入。 通过蛋白质设计

让世界变得更美好
是我毕生的工作。

我对
我们可以一起做的事情感到非常兴奋。

我希望你能加入我们

,谢谢。

(掌声和欢呼)