A new type of medicine custommade with tiny proteins Christopher Bahl

I’m a protein designer.

And I’d like to discuss
a new type of medicine.

It’s made from a molecule
called a constrained peptide.

There are only a few constrained
peptide drugs available today,

but there are a lot that will hit
the market in the coming decade.

Let’s explore what these new
medicines are made of,

how they’re different and what’s causing
this incoming tidal wave

of new and exciting medicines.

Constrained peptides
are very small proteins.

They’ve got extra chemical bonds
that constrain the shape of the molecule,

and this makes them incredibly stable

as well as highly potent.

They’re naturally occurring,
our bodies actually produce a few of these

that help us to combat
bacterial, fungal and viral infections.

And animals like snakes and scorpions

use constrained peptides in their venom.

Drugs that are made of protein
are called biologic drugs.

So this includes constrained peptides,

as well as medicines like insulin

or antibody drugs like Humira or Enbrel.

And in general, biologics are great,

because they avoid several ways
that drugs can cause side effects.

First, protein.

It’s a totally natural,
nontoxic material in our bodies.

Our cells produce tens of thousands
of different proteins,

and basically, all of our food
has protein in it.

And second, sometimes drugs interact
with molecules in your body

that you don’t want them to.

Compared to small molecule drugs,

and by this I mean
regular drugs, like aspirin,

biologics are quite large.

Molecules interact when they adopt shapes
that fit together perfectly.

Much like a lock and key.

Well, a larger key has more grooves,

so it’s more likely to fit
into a single lock.

But most biologics also have a flaw.

They’re fragile.

So they’re usually
administered by injection,

because our stomach acid
would destroy the medicine

if we tried to swallow it.

Constrained peptides are the opposite.

They’re really durable,
like regular drugs.

So it’s possible to administer them
using pills, inhalers, ointments.

This is what makes constrained peptides
so desirable for drug development.

They combine some of the best features

of small-molecule
and biologic drugs into one.

But unfortunately,
it’s incredibly difficult

to reengineer the constrained peptides
that we find in nature

to become new drugs.

So this is where I come in.

Creating a new drug
is a lot like crafting a key

to fit a particular lock.

We need to get the shape just right.

But if we change the shape
of a constrained peptide by too much,

those extra chemical bonds
are unable to form

and the whole molecule falls apart.

So we needed to figure out
how to gain control over their shape.

I was part of a collaborative
scientific effort

that spanned a dozen institutions
across three continents

that came together
and solved this problem.

We took a radically different approach
from previous efforts.

Instead of making changes
to the constrained peptides

that we find in nature,

we figured out how to build new ones
totally from scratch.

To help us do this,

we developed freely available
open-source peptide-design software

that anyone can use to do this, too.

To test our method out,

we generated a series
of constrained peptides

that have a wide variety
of different shapes.

Many of these had never been seen
in nature before.

Then we went into the laboratory
and produced these peptides.

Next, we determined
their molecular structures,

using experiments.

When we compared our designed models

with the real molecular structures,

we found that our software
can position individual atoms

with an accuracy that’s at the limit
of what’s possible to measure.

Three years ago, this couldn’t be done.

But today, we have the ability
to create designer peptides

with shapes that are custom-tailored
for drug development.

So where is this technology taking us?

Well, recently,

my colleagues and I
designed constrained peptides

that neutralize influenza virus,

protect against botulism poisoning

and block cancer cells from growing.

Some of these new drugs

have been tested in preclinical trials
with laboratory animals.

And so far, they’re all safe
and highly effective.

Constrained peptide design
is a cutting-edge technology,

and the drug development pipeline
is slow and cautious.

So we’re still three to five years
out from human trials.

But during that time,

more constrained peptide drugs

are going to be entering
the drug development pipeline.

And ultimately, I believe
that designed peptide drugs

are going to enable us all to break free

from the constraints of our diseases.

Thank you.

(Applause)

我是一名蛋白质设计师。

我想讨论
一种新型药物。

它是由一种称为受限肽的分子制成的

目前只有少数几种受限
肽药物可用,

但未来十年将有很多
药物上市。

让我们探索一下这些
新药是由什么制成的,

它们有何不同,以及是什么导致了
这股

令人兴奋的新药浪潮。

受限肽
是非常小的蛋白质。

它们有额外的化学键
来限制分子的形状

,这使得它们非常

稳定且非常有效。

它们是自然发生的,
我们的身体实际上会产生其中的一些

,帮助我们对抗
细菌、真菌和病毒感染。

像蛇和蝎子这样的动物

在毒液中使用受限肽。

由蛋白质制成的
药物称为生物药物。

因此,这包括受限肽,

以及胰岛素

等药物或 Humira 或 Enbrel 等抗体药物。

总的来说,生物制剂很棒,

因为它们避免
了药物引起副作用的几种方式。

首先,蛋白质。

它是我们体内完全天然、
无毒的物质。

我们的细胞产生成千上万
种不同的蛋白质

,基本上,我们所有的食物
都含有蛋白质。

其次,有时药物会
与你体内的分子发生相互作用,而

这是你不希望它们发生的。

与小分子药物相比

,我指的是
常规药物,如阿司匹林,

生物制剂相当大。

当分子采用完美结合的形状时,它们会相互作用

很像锁和钥匙。

嗯,更大的钥匙有更多的凹槽,

所以它更有可能
适合单个锁。

但大多数生物制剂也存在缺陷。

它们很脆弱。

所以它们通常
通过注射给药,

因为如果我们试图吞下它,我们的胃酸
会破坏药物

受限制的肽则相反。

它们真的很耐用,
就像普通药物一样。

因此,可以
使用药丸、吸入器、软膏来管理它们。

这就是使受限肽
在药物开发中如此受欢迎的原因。

它们将

小分子
药物和生物药物的一些最佳特性合二为一。

但不幸的是,
将我们在自然界中发现

的受限肽重新设计

成新药非常困难。

所以这就是我进来的地方。

创造一种
新药很像制作一把

适合特定锁的钥匙。

我们需要使形状恰到好处。

但是,如果我们
过多地改变受限肽的形状,

那些额外的化学键
就无法形成

,整个分子就会分崩离析。

所以我们需要弄清楚
如何控制它们的形状。

我参与了一项

跨越三大洲的十几个机构的协作科学努力,这些机构

联合
起来解决了这个问题。

我们采取了
与以前的努力完全不同的方法。

我们没有改变我们在自然界中发现的受限肽,

而是想出了如何完全从头开始构建新的肽

为了帮助我们做到这一点,

我们开发了免费提供
的开源肽设计软件

,任何人都可以使用它来做到这一点。

为了测试我们的方法,

我们生成了一系列

具有
各种不同形状的受限肽。

其中许多以前从未
在自然界中见过。

然后我们进入实验室
并生产这些肽。

接下来,我们通过实验确定了
它们的分子结构

当我们将我们设计的模型

与真实的分子结构进行比较时,

我们发现我们的软件
可以定位单个原子

,其精度
达到了可以测量的极限。

三年前,这是做不到的。

但是今天,我们有
能力创造

具有为药物开发量身定制的形状的设计肽

那么这项技术将把我们带到哪里呢?

好吧,最近,

我和我的同事
设计

了中和流感病毒、

防止肉毒杆菌中毒

和阻止癌细胞生长的受限肽。

其中一些新药

已经在实验室动物的临床前试验中进行
了测试。

到目前为止,它们都是安全
且高效的。

约束肽设计
是一项前沿技术

,药物开发
流程缓慢且谨慎。

所以我们距离人体试验还有三到五年的时间

但在此期间,

更多受限的肽类

药物将
进入药物开发渠道。

最终,我
相信设计的肽

药物将使我们所有人都能

摆脱疾病的束缚。

谢谢你。

(掌声)