Turning Sound into Matter

Transcriber: Amanda Zhu
Reviewer: Rhonda Jacobs

My name is Marcus Buehler.

I’m the McAfee Professor
of Engineering at MIT.

And I’m also a member of the Center
for Computational Science and Engineering

in the Schwarzman College of Computing.

In this talk, I’ll be talking
about the nexus of materialized sound

and sonified material.

We’re going to be talking about
how vibrations, sound, and matter interact

and how we can use music
to design new and better materials.

If we’re thinking
about biological structures,

such as a spiderweb,

we can see they’re very detailed,
very intricate, very complex structures.

If we look in a spiderweb -

in this case, a 3D spiderweb -

there are many internal structures

that go really from the macroscale
all the way down to the nanoscale.

We’re now flying inside the web structure,

and we can see that this web
has very complex architectural features.

As we go closer, we see more and more
of those architectural features

emerge and become visible.

If we go even closer, we can look
inside each of the silk filaments.

We can recognize

that each silk filament itself
consists of a hierarchical structure.

This hierarchical structure
ranges from the molecular scale,

the individual protein molecules,

which are assembled atom by atom

to form secondary structures

to form tertiary structures
to form bundles of proteins,

ultimately forming filaments,

assembling into bundles
of filaments and fibrils,

then forming the filaments,

the silk fibers
that you can see in the web.

So you can see that the web structure

really has a structure
that goes from the macroscale

all the way down to the nanoscale.

How are these materials built?

Well, these materials are built in nature

by encoding structural information
through the genetic sequence,

usually encoded by DNA.

These DNA letters encode information
about how proteins are built.

Proteins are built from primary sequences:

these genetic information letters
forming sequences of amino acids,

forming secondary structures
such as alpha helices or beta sheets,

and these in turn form
more complicated structures,

such as collagen in our bones,

spider silk consisting of beta sheets
and alpha helix mixtures,

to also more complex structures

like viruses.

What you see in this slide,
in this picture here,

is a pathogen of COVID-19,

which has these spike proteins
sticking out on the surface,

which give this virus its name,
the coronavirus, or crowns.

This coronavirus is encoded
by sequences of amino acids,

encoded by letters of RNA or DNA,
genetic information.

This genetic information
provides the building plan

for how this virus is actually built.

Just like the virus
is built from the bottom up,

forming hierarchical structures

across different length scales
and time scales,

we also know that in engineering,

we might be able to use
such an approach as well.

Thinking about an architectural system
like the Eiffel Tower,

you can also recognize
that this system has features as well

that go from the macro-
all the way down to the nanoscale.

Even though engineers have been using
hierarchical principles

for an extended period of time,

we have not yet been able
to tune simultaneously molecular scale

all the way to the macroscopic level.

One other feature
that’s really interesting

is a unifying theme and feature
across different manifestations of matter.

And that is the equivalence
of vibrations, to matter, to sound.

The universality of waves and vibrations
is something we see in molecules.

We can recognize that
at the quantum mechanical level,

we can describe matter
as collections of waves.

We can also see

that sound is an overlaying
of sine waves, harmonic waves,

to create more complicated
sound structures.

And we can also see that spiders,
for instance, use waves

as a way of communicating
and understanding the environment.

Waves, sound, vibrations are universal,

and we can use perhaps
vibrations and sound

as a way of defining material models,

optimizing materials,

and even inventing entirely new materials

by using vibrations.

Here we show how we can evolve
the way hierarchical systems are built.

Thinking about a spider,

a spider uses vibrations
as a way of sensing the environment,

communicating with other spiders,
sensing threat, detecting prey,

and many other things.

They use the signals they collect,
process it in their brain,

and make decisions -

make decisions about how to build the web,
just like an autonomous 3D printer.

They build webs by assembling
materials in space,

depositing materials in space,
repairing the web,

and interacting with other spiders,

forming an autonomous material system,
a smart material system,

an intelligent material system.

Humans operate in a very similar way.

When humans build things,

when we create a painting,
play an instrument,

we sense the environment,

we make decisions about what to do next,
what kind of tool to use.

When we’re thinking about wood carving,

what kind of action to do next
to create a certain pattern.

We play an instrument -

we decide on what key to play next
depending on what we hear.

These kind of processes
are very similar to what the spider does.

The question is, can we incorporate
some of those feedback mechanisms,

some of these autonomous ways
of creating materials, of creating matter

through sensing, processing
information in neural networks

and creating new things from it?

Can we utilize those and implement those
in technological solutions

to create materials that aren’t static
but materials that are alive,

that can interact with the environment
in innovative and novel ways?

In fact, one way to do that
is to translate matter -

because matter has equivalences
to vibrations into sound -

and use sound as a way
of designing new matter.

The way that we do this
is we have a material composition,

a material structure -

we can understand it
as a set of vibrations -

we can compute the set of vibrations,
make it into audible sound,

and manipulate the sound.

We can make new sound,

we can change the sound,

and we can then use a reverse translation
to move sound back into matter.

By doing this, we solve
the design problem,

which really consists of assembling
a set of building blocks,

kind of like Lego building blocks,

into structures.

In the case of sound those building blocks

are sine waves or instruments
or melodies or keys on a piano.

We can assemble
complex pieces of structure,

complex pieces of sound,
complex melodies,

simultaneously played,
intersecting, interweaving,

and create really
complicated designs in sound,

which then we can translate
back into material.

So the question is,

what kind of material
would a certain composition,

like from Bach or Beethoven,
maybe represent?

Can we utilize this idea

in designing entirely new materials
that nature has not yet invented?

Can we come up with engineering solutions

to sustainable materials
that we cannot otherwise obtain?

Sound is a really elegant way
of capturing multiple levels

in the material organization.

We call it a spiderweb.

It has many different structures.

If you recall, we were going
from the big, large scale into the web,

and we can recognize from the beginning

the architectural levels,
structural details,

all the way down to the molecular scales

and the individual atoms
that make up the amino acids,

which are the building blocks of proteins.

These amino acids to proteins,
to assemblies of proteins,

to filaments, fibers
to the entire web architecture

is a really complicated puzzle.

By using sound, we can hear simultaneously
all these different levels.

Each level contributes
a particular type of frequency spectrum.

By listening to it, our ear, our brain
can process the information,

and we can design
new hierarchical structures,

just like in music.

If we think about matter and molecules,
let’s take a closer look.

If you open a chemistry textbook,

most likely you’re going to find
a drawing of a molecule,

like benzene in this case.

These kinds of models change over time,

but I would say they’re all wrong

because these pictures
in a textbook are static.

They look like static drawings,

when in fact, molecules
are continuously moving.

They’re vibrating;
they’re moving all the time.

These vibrations and movements

is actually what defines
the structure of these molecules.

Each molecule has
a unique fingerprint of sound,

just like you can hear here
the vibrations of a guitar,

you can hear the vibrations
creating what we call music.

(A few notes on a guitar)

In a similar way, vibrations of molecule
also have a unique sound,

and we can make it audible

by transposing the frequencies
into the audible range

so that our brain
can process the information.

What you hear here is the sounding
of a complex protein structure.

(Electronic music)

The protein is vibrating all the time.

It’s continuously moving.

These movements and motions
can be made into audible sound,

just like playing multiple guitars,
multiple instruments,

and multiple structures
in musical composition.

By having a model of a protein in sound,

we can begin to understand
the protein better,

have another way
of understanding structure,

we can very quickly process information,

we can understand
questions like mutations,

we can understand how proteins
might change the folding geometry

as mutations happen,

we can understand
how diseases might be treated

by developing antibodies or drugs
that bind to the protein.

All these aspects can be very easily done
and heard in sound space.

One discovery made recently
is that each of the amino acids,

the 20 natural building blocks
for all proteins, called amino acids,

have a unique sound.

They have a unique fingerprint.

In other words, they have
a unique key on a piano.

They all sound different.

What you hear now is the sound
of each of the 20 amino acids

going from the beginning to the end.

(Electronically generated sounds)

These are the sounds of life.

These sounds can be utilized
to build models of proteins;

in fact, what you hear now

is a musical representation
of the spike protein

of COVID-19’s pathogen.

(Slow, string music)

This is a very large protein,
with about 3,000 amino acids.

Because the protein is so big and has
such a complicated folding geometry,

the musical composition that results
from this protein to reflect its structure

is very long;
(Music ends)

in fact, it’s about one hour
and 50 minutes long.

The protein itself
is hierarchical in nature.

It has primary sequence,
as we’ve talked about before,

encoded by the genetic
information of the virus.

Again, there are 30,000
basic levels of information

in the genetic code of the virus.

3,000 of these encode
this particular protein.

Then we have secondary structures

like alpha helices
and beta sheets and random coils

and other structures as well.

These are then folded
into complex geometries.

The resulting music
is a very complicated piece

because we have many different melodies
weaving into another,

creating what we call
in music “counterpoint.”

Counterpoint is a concept
introduced and used very heavily

by Johann Sebastian Bach, for instance,
a couple of hundred years ago.

So he has already utilized

some of the structural features
we find in proteins.

By using sound or music
as a way of modeling proteins,

we can build very powerful coding models

that we can use in
artificial intelligence applications.

In fact, in recent work,
we have used proteins to build data sets

to represent thousands and hundreds
of thousands of hours of music

that reflect these proteins

and train artificial neural networks
to listen to them.

These AIs can then generate new music
based on what they have learned.

These new musical compositions

can then, once generated,
be translated back into proteins

because we have a unique mapping

between the protein sound
and the genetic information.

So we can go from protein,
from material to sound

through the understanding
of the equivalence of waves and matter.

We can then use waves, or sound,
as a way of creating new sound,

to editing the sound,
to manipulating the sound,

to coming up with new design solutions,

not only by human, but also using AIs.

And we can use the new sound,
then translating that back into material -

so we can materialize sound.

This nexus of matter and sound
is very exciting

because it allows us
to use different techniques

to solve various design problems.

In the case of COVID-19,

one of the design problems
we’re after, of course,

is to think about ways
of creating antibodies,

molecules of proteins that can bind
to the protein in the virus

more strongly than the protein
can bind to the human cell.

What you hear now is one of these proteins
that we have generated using AI.

(Violin music)

And you can see in the picture
how this protein looks like.

This is a protein
that nature has not yet invented.

Now, how do we create this?

We listen to many different kinds
of coronavirus spike proteins,

different species,

different evolutionary stages
of the coronavirus,

not only the current COVID-19,
but many other coronviruses.

We then let the AI method
generate new music

that reflects the innate structures
in these particular type of proteins,

which are all spike proteins in viruses.

And the resulting piece

is a composition that reflects
a protein geometry, a protein sequence

that has something to do
with these coronavirus spike proteins

but has not yet been found in nature.

This kind of composition,
this kind of sequence,

might in fact hold the key to an antibody

because it matches the types of sequence
that we find in the protein,

in the genetic information.

(Music)

Here you can hear a piano composition
that reflects the moment of infection.

This is a protein structure that resembles

the moment when the virus spike protein
attaches to the human cell.

During the attachment process,
(Music ends)

the protein changes
its orientation slightly,

and you can hear this attachment

in a slight change in the spectrum
of frequencies and vibrations,

and you can make it audible through music.

So music here provides a microscope
into the world of molecular motions,

into the world of infection, detachment,
and the interaction of the virus

ultimately with the human body.

Vibrations can also be seen
in other manifestations;

for instance, in surface waves.

Water waves in a lake
is a very common phenomenon;

in fact, this phenomenon of having sun
shining on a lake or on water bodies,

having waves creating
surface waves in the water,

and seeing the glittering
of this resulting product

is something that’s been
very important in human evolution.

Humans use these glittering concepts
as a way of finding water -

not only humans do that,
but many animals as well.

It’s a way of detecting water -
by using surface waves.

So we’ve been trying to see

whether we can think about
using the deeper structures

of water waves, surface waves

generated not only by wind loading
or other environmental influences

but also generating those

through the mechanical signatures
of vibrations encoded in the proteins.

So we’ve created an experimental setup

where we can excite water

through the innate
vibrations in the protein

and make them visible.

You can then see at the macroscopic level

with your eyes

how these proteins excite water

and what kind of
unique patterns they form.

Turns out different protein
states, different vibrations,

we can see the different patterns formed
with our eyes from the molecular scale.

It provides yet another way
of visualizing nanoscopic elements,

nanoscopic events, nanoscopic features,

not only with our ears, like in music,

but also using our eyes
by looking at wave patterns.

These wave patterns can distort reality.

As shown here in this animation,
(Music)

you can see how we have used a camera
to film the surface of a wave

and watching the reflections
off the environment,

in this case, trees and brushes
in a snowy landscape.

Because there’s a slight
wind loading on this water body,

there’s slight surface waves,

and these surface waves
distort the image recorded by the camera.

(Music ends)

So even though you can recognize
the image, there’s a slight distortion.

This distortion, the inceptionism

of creating a different image
based on an environmental influence

is something we’d like to explore

and see whether we can use
a similar concept

to see how reality
might be distorted or changed

by visualizing
protein vibrations in water.

Imaging water waves
generated by protein vibrations

is in fact a powerful way
of detecting proteins.

What we’ve done here is we have selected
a number of different proteins

and visualized them in water waves,
in water surface waves,

and then trained the neural network
against thousands of images

for each of those proteins.

What the neural network can learn
through this training process is:

What are the wave patterns

that are associated
with each of the protein structures?

This is how it looks like
for one of the examples.

You can see there’s a really interesting
innate pattern forming on the surface

because of the protein vibrations.

So these mechanical vibrations
of the proteins

are causing these surface waves,

which in turn create
very interesting patterns

that can be picked up with the eyes
or with a high speed camera.

Each protein has
a unique spectrum of vibrations,

as I mentioned earlier.

You could hear that
in the music I’ve played.

Here is a graphical visual
representation of the same idea.

You can see in this bar chart
the fingerprint of two different proteins.

On the left-hand side,
it’s a protein called 6m17,

which is the situation

when the COVID-19 pathogen
is bound to the human cell.

On the right-hand side,
you see a protein called 6m18.

It’s the case when the virus
is not attached to the human cell.

So on right-hand side, not infected;
Left-hand side, infected.

This protein

is a very particularly important aspect

of understanding the infection process
of COVID-19 into the human body.

We’ve trained a neural network
against many different proteins

and detected surface waves.

We can do another experiment now

and film or record photos of surface waves
associated with different proteins

and use the neural network to classify

what kind of protein
has caused these surface waves.

In fact, the method works really well.

You can see on the left-hand side,
it’s a protein called 107m.

This protein is shaded
in a brownish color.

And you can see in this bar chart,

the highest probability of prediction
for this scenario is the brown color,

which, in fact, reflects
this particular protein, 107m.

It’s by far the highest probability.

So the model is perfectly able
to predict the structure.

And you can go through this entire graph
and see that every single case,

the highest prediction, by far,

reflects the actual protein
causing the vibration.

So the method is able to,

by just looking at the picture
of the surface waves,

immediately detect what is the underlying
protein causing these vibrations.

Let’s look at the middle part.

6m17 and 6m18 are
the proteins shown before.

These are the infection stages,

when the molecular interaction begins
between the COVID-19 pathogen

and the human body.

6m17 is the attached state;
6m18 is the detached state.

And even though the structure
is very similar -

there’s only a very slight
molecular change

and very slight change
in the vibrational spectrum,

as you’ve seen on the previous picture -

the method is able
to pick up the differences very well.

The highest probability
in 6m18 is a light blue,

which reflects that particular structure.

So it’s able to predict that.

6m17 is a greenish color
and the same idea.

Highest probability
is for this particular structure.

So the method can not only distinguish
many different classes of proteins -

small, big - but it can also describe

very subtle differences
in vibrational spectra,

very subtle differences
in protein folding states

through these surface waves.

We can use this method to develop
an approach called protein inceptionism.

We can try to see
whether we can find patterns

that are found in
these surface waves in water

generated by the proteins in other images.

Taking of mountain landscape,
maybe taking of lakes,

taking of anything
we can see with our eyes,

we can take a photo and identify
whether we can see

some of those innate features
that are seen in these protein vibrations

impacting on surface waves
also in other systems.

Where and how do we recognize molecular
vibrations in other everyday objects?

We use the DeepDream algorithm to do that

and apply the neural network
we have trained

against all these various
protein vibrations.

You can see a picture here.

This is how the vibrational
spectrum looks like,

embedded, realized
in this water wave surface structure.

If we apply the protein
inceptionism algorithm to that,

it will, in fact, recognize
all these different patterns

which are unique
to this particular protein.

And that’s how the neural network works.

The inner layers determine features
that are unique to that particular protein

and detects which protein
has been creating the vibrations.

We can use that image processing

to see these features
a little more clearly,

and this picture here shows

how the processing of this results
in these spaghetti-like structures,

so those are the unique
fingerprints, or structures,

that are actually causing
these particular resonances

in the neural network.

The resonances in the neural network

generated by the protein
inceptionism algorithm

really is a powerful way of visualizing

how certain features can be magnified

and made more visible and amplified
and resonated in these images.

Just like resonances happen
in musical instruments like a guitar,

here we can see resonances

as an image generated ultimately
by the molecular vibrations.

Now, if we look at another situation
where we have water waves in the river -

this is the original picture -

and these waves are now
not caused by proteins,

these waves, in fact,
are caused by flowing water over rocks,

and you can see how the algorithm picks up
certain features in these water waves,

which, again, do not occur
because of proteins

but have similar features as the ones
seen in protein-caused water waves.

Again, with some processing of the images,

you can see there’s
a certain pattern that emerges.

These are all the areas,
the spaghetti-like structures,

where the algorithm detects resonances
of the inner detailed structures

that are caused
by these protein vibrations.

So protein vibrations
are also seen in rivers.

This is an example of a coastal landscape
where we have three elements.

We have the water, we have rocks,
and we have air.

And in fact, the algorithm detects
these features of protein vibrations

in all three elements -

some of them in the water waves,
which is not surprising,

because both of them are water waves.

We also see some of these ideas
being resembled in rocks.

Some of the features,
some of the patterns in rocks

resemble those seen in the proteins.

And we can also see a few of those
being picked up in the sky.

And again, this is the analysis
using the image processing,

and you can see where in the image

we can pick up the features
that are natural,

that are innate to the protein vibrations.

Matter is sound, and sound is matter.

In fact, we’ve seen that when we think
about the representation of material,

we can think of it
as a collection of vibrations.

We can make it audible.

We can also make the vibrations visible
in other states of matter,

like in liquids, in water,
for instance, as surface waves.

And we can utilize various ways
of manipulating matter,

of creating new materials

by either creating new sound

or using sound

as a way of detecting information
in existing musical compositions.

So you can ask the question:

What kind of material did Beethoven create
by analyzing the compositions he made?

We can also see protein vibrations
or the features of protein vibrations,

the unique signatures of the vibrational
spectrum, in other forms.

Using the protein inceptionism
as an algorithm,

we’ve been able to show
that these vibrations can be seen

not only in water waves
but also in other states of matter.

They can be seen in landscapes.

They can be seen in plants.

They can be seen in the sky and snow
and many other elements.

Thank you so much for your attention.

抄写员:Amanda Zhu
审稿人:Rhonda Jacobs

我的名字是 Marcus Buehler。

我是
麻省理工学院的 McAfee 工程学教授。

我也是

施瓦茨曼计算学院计算科学与工程中心的成员。

在本次演讲中,我将
讨论物化声音和声化材料的关系

我们将
讨论振动、声音和物质

如何相互作用,以及我们如何使用音乐
来设计新的更好的材料。

如果我们
考虑生物结构,

例如蜘蛛网,

我们可以看到它们是非常详细、
非常复杂、非常复杂的结构。

如果我们查看蜘蛛网 -

在这种情况下,是 3D 蜘蛛网 -

有许多内部结构

从宏观尺度
一直到纳米尺度。

我们现在在网络结构中飞行

,我们可以看到这个网络
具有非常复杂的架构特征。

随着我们走得更近,我们看到越来越多
的这些建筑特征

出现并变得可见。

如果我们走得更近,我们可以看到
每根丝线的内部。

我们可以认识到

,每根丝丝本身
都由一个层次结构组成。

这种层次结构的
范围从分子尺度

,单个蛋白质分子

,逐个原子组装

形成二级结构

,形成三级结构
,形成蛋白质束,

最终形成细丝,

组装成
细丝和原纤维束,

然后形成细丝

,你可以在网上看到的丝绸纤维。

所以你可以看到网状

结构真的有一个

宏观到纳米级的结构。

这些材料是如何建造的?

嗯,这些材料是

通过

通常由 DNA 编码的基因序列编码结构信息而在自然界中构建的。

这些 DNA 字母编码
有关蛋白质如何构建的信息。

蛋白质是由一级序列构成的:

这些遗传信息字母
形成氨基酸序列,

形成二级结构
,如α螺旋或β折叠,

而这些又形成
更复杂的结构,

如我们骨骼中的胶原蛋白、

由β折叠组成的蜘蛛丝
和α螺旋混合物

,以及更复杂的结构,

如病毒。

你在这张幻灯片中看到的

是 COVID-19 的病原体,

它的表面有这些刺突蛋白

这就是这种病毒的名字
,冠状病毒或冠。

这种冠状病毒
由氨基酸序列

编码,由 RNA 或 DNA 字母、
遗传信息编码。

这些遗传信息

为这种病毒的实际构建方式提供了构建计划。

就像病毒
是自下而上构建的,

形成

跨越不同长度尺度
和时间尺度的层次结构,

我们也知道,在工程中,

我们也许也可以使用
这样的方法。

考虑
像埃菲尔铁塔这样的建筑系统,

您还可以认识
到该系统也

具有从
宏观到纳米级的特征。

尽管工程师们在

很长一段时间内一直在使用分层原理,

但我们还不能
同时将分子尺度一直调整

到宏观水平。

另一个
真正有趣的

特征是
跨物质不同表现形式的统一主题和特征。

这就是
振动、物质、声音的等价性。

波和振动的普遍性
是我们在分子中看到的。

我们可以认识到,
在量子力学水平上,

我们可以将物质描述
为波的集合。

我们还可以看到

,声音
是正弦波、谐波的叠加

,形成更复杂的
声音结构。

例如,我们还可以看到蜘蛛
使用波浪

作为交流
和理解环境的一种方式。

波、声音、振动是普遍存在的

,我们或许可以使用
振动和

声音来定义材料模型、

优化材料,

甚至

通过使用振动来发明全新的材料。

在这里,我们展示了我们如何
发展分层系统的构建方式。

想想蜘蛛

,蜘蛛使用振动
作为感知环境、

与其他蜘蛛交流、
感知威胁、检测猎物

和许多其他事情的一种方式。

他们使用收集到的信号,
在大脑中对其进行处理,

然后做出决定——

就如何构建网络做出决定,
就像一台自主的 3D 打印机一样。

它们通过
在空间中组装材料、在空间中

存放材料、
修复网络、

与其他蜘蛛互动来构建网络,

形成自主材料系统
、智能材料系统

、智能材料系统。

人类以非常相似的方式运作。

当人类建造东西时,

当我们创作一幅画,
演奏一种乐器时,

我们会感知环境,

我们会决定下一步做
什么,使用什么样的工具。

当我们在思考木雕时,

接下来要做什么动作
来创造一定的图案。

我们演奏一种乐器——

我们根据听到的内容决定接下来要演奏什么键

这些过程
与蜘蛛所做的非常相似。

问题是,我们能否结合
其中的一些反馈机制,

其中一些自主
的创造材料的方式,通过传感创造物质,

在神经网络中处理信息

并从中创造新事物?

我们能否利用这些并
在技术解决方案中实施这些

材料,以创造出不是静态的
材料,而是活的材料

,可以
以创新和新颖的方式与环境相互作用?

事实上,做到这
一点的一种方法是将物质

转化为声音——因为物质相当于将振动转化为声音——

并使用声音作为
设计新物质的一种方式。

我们这样做的方式
是我们拥有一种材料成分,

一种材料结构——

我们可以将其理解
为一组振动——

我们可以计算这组振动,
使其变成可听的声音,

并操纵声音。

我们可以制造新的声音,

我们可以改变声音,

然后我们可以使用反向
翻译将声音移回物质。

通过这样做,我们解决
了设计问题,

这实际上包括将
一组积木(

有点像乐高积木)组装

成结构。

在声音的情况下,这些构建块

是正弦波或乐器
或旋律或钢琴上的键。

我们可以组装
复杂的结构、

复杂的声音、
复杂的旋律,

同时播放、
交叉、交织

,创造出非常
复杂的声音设计

,然后我们可以将其转化
回材料。

所以问题是,

特定的作品,

比如巴赫或贝多芬的作品,
可能代表什么样的材料?

我们可以利用这个想法

来设计
大自然尚未发明的全新材料吗?

我们能否为

我们无法获得的可持续材料提出工程解决方案?

声音
是捕捉

材料组织中多个层次的一种非常优雅的方式。

我们称之为蜘蛛网。

它有许多不同的结构。

如果你还记得,我们是
从大规模进入网络

,我们可以从一开始就识别

架构级别、
结构细节,

一直到分子尺度

和构成氨基酸的单个原子

它们是蛋白质的组成部分。

这些氨基酸到蛋白质
、蛋白质组装体

、细丝、纤维
到整个网络架构

是一个非常复杂的难题。

通过使用声音,我们可以同时听到
所有这些不同的层次。

每个级别贡献
特定类型的频谱。

通过聆听,我们的耳朵、我们的大脑
可以处理信息

,我们可以设计
新的层次结构,

就像在音乐中一样。

如果我们考虑物质和分子,
让我们仔细看看。

如果你打开一本化学教科书,

你很可能会找到
一个分子的图画,

比如本例中的苯。

这些模型会随着时间而变化,

但我会说它们都是错误的,

因为
教科书中的这些图片是静态的。

它们看起来像静态图纸,

而实际上,分子
在不断移动。

它们在振动;
他们一直在移动。

这些振动和

运动实际上决定
了这些分子的结构。

每个分子都有
一个独特的声音指纹,

就像你可以在这里听到
吉他的振动一样,

你可以听到
产生我们所谓的音乐的振动。

(吉他上的几个音符

) 类似地,分子的振动
也有独特的声音

,我们可以

通过将频率
转换到可听范围内

使其可听见,这样我们的大脑
就可以处理信息。

你在这里听到
的是复杂蛋白质结构的声音。

(电子音乐

)蛋白质一直在振动。

它在不断地移动。

这些动作和动作
可以制成可听的声音,

就像在乐曲中演奏多把吉他、
多种乐器

和多种结构一样

通过建立健全的蛋白质模型,

我们可以开始
更好地理解蛋白质,

以另一种
方式理解结构,

我们可以非常快速地处理信息,

我们可以理解
突变等问题,

我们可以理解蛋白质
如何改变折叠几何形状

随着突变的发生,

我们可以了解
如何

通过开发
与蛋白质结合的抗体或药物来治疗疾病。

所有这些方面都可以很容易地
在声音空间中完成和听到。

最近发现的一个发现
是,每种氨基酸,

即所有蛋白质的 20 种天然
组成部分,称为氨基酸,

都有独特的声音。

他们有一个独特的指纹。

换句话说,他们
在钢琴上有一个独特的键。

它们听起来都不同。

你现在听到的
是 20 种氨基酸中的每一种

从头到尾的声音。

(电子产生的声音)

这些是生命的声音。

这些声音可
用于构建蛋白质模型;

事实上,你现在听到的

COVID-19 病原体刺突蛋白的音乐表现。

(慢,弦乐)

这是一种非常大的蛋白质
,大约有 3,000 个氨基酸。

由于这种蛋白质如此之大,而且具有
如此复杂的折叠几何形状,

因此
由这种蛋白质所产生的反映其结构

的乐曲很长;
(音乐结束)

其实,一
小时五十分钟左右。

蛋白质本身
本质上是分层的。

正如我们之前讨论过的,它具有

由病毒的遗传信息编码的一级序列

同样,病毒的遗传密码中有 30,000 个
基本信息级别

其中 3,000 个编码
这种特殊的蛋白质。

然后我们有二级结构,

如α螺旋
和β折叠和无规线圈

以及其他结构。

然后将它们折叠
成复杂的几何形状。

由此产生的音乐
是一首非常复杂的作品,

因为我们有许多不同的旋律
交织在一起,

创造了我们
在音乐中所说的“对位”。

例如,几百年前,约翰·塞巴斯蒂安·巴赫(Johann Sebastian Bach)引入并大量使用了对位点概念

所以他已经利用


我们在蛋白质中发现的一些结构特征。

通过使用声音或音乐
作为蛋白质建模的一种方式,

我们可以构建非常强大的编码模型

,可以在
人工智能应用中使用。

事实上,在最近的工作中,
我们已经使用蛋白质来构建数据集

来代表
成千上万小时的

反映这些蛋白质的音乐,

并训练人工神经网络
来聆听它们。

然后,这些 AI 可以
根据他们所学的内容生成新音乐。

这些新的音乐作品

一旦生成,就
可以被翻译回蛋白质,

因为我们

在蛋白质声音
和遗传信息之间有一个独特的映射。

所以我们可以

通过理解
波和物质的等价性,从蛋白质,从物质到声音。

然后,我们可以使用波或声音
作为创造新声音的一种方式

,编辑声音
,操纵声音

,提出新的设计解决方案,

不仅由人类,而且还使用人工智能。

我们可以使用新的声音,
然后将其转换回材料——

这样我们就可以将声音具体化。

这种物质和声音的联系
非常令人兴奋,

因为它允许
我们使用不同的技术

来解决各种设计问题。

在 COVID-19 的情况下,我们要

解决的设计问题
之一当然


考虑制造抗体的方法,

即与
病毒中的蛋白质结合的蛋白质分子

比蛋白质与病毒
的结合力更强。 人体细胞。

你现在听到的
是我们使用人工智能生成的这些蛋白质之一。

(小提琴音乐

)你可以在图片中
看到这种蛋白质的样子。


是自然界尚未发明的蛋白质。

现在,我们如何创建它?

我们听取了许多不同种类
的冠状病毒刺突蛋白、

不同种类、

不同进化阶段
的冠状病毒,

不仅是当前的 COVID-19,
还有许多其他冠状病毒。

然后,我们让 AI 方法
生成新的音乐

,以反映
这些特定类型蛋白质的先天结构,

这些蛋白质都是病毒中的刺突蛋白。

由此产生的片段


反映蛋白质几何形状的组合物,蛋白质序列

与这些冠状病毒刺突蛋白有关,

但尚未在自然界中发现。

这种组成,
这种序列,

实际上可能是抗体的关键,

因为它与
我们在蛋白质

和遗传信息中发现的序列类型相匹配。

(音乐)

在这里,您可以
听到反映感染时刻的钢琴曲。

这是一种蛋白质结构,类似于

病毒刺突蛋白
附着在人体细胞上的那一刻。

在附着过程中,
(音乐结束

)蛋白质会
稍微改变它的方向

,你可以

在频谱和振动的频谱中听到这种附着的轻微变化

,你可以通过音乐让它听得见。

因此,这里的音乐提供了一个显微镜,可以
深入了解分子运动

的世界,了解感染、分离
以及病毒

最终与人体相互作用的世界。

振动也可以
在其他表现形式中看到;

例如,在表面波中。


中的水浪是一种非常普遍的现象;

事实上,阳光
照射在湖泊或水体上,

波浪在水中产生表面波

,看到
这种产物的闪光,这种现象

在人类进化过程中非常重要。

人类使用这些闪闪发光的概念
作为寻找水的一种方式——

不仅人类这样做
,许多动物也这样做。

这是一种检测水的方法——
通过使用表面波。

所以我们一直在尝试看看

我们是否可以考虑
使用水波的更深层

结构,

不仅由风荷载
或其他环境影响产生的表面波,

而且还

通过
蛋白质中编码的振动的机械特征产生这些结构。

所以我们创建了一个实验装置

,我们可以

通过
蛋白质中的固有振动激发水

并使它们可见。

然后,您可以用眼睛在宏观水平

看到这些蛋白质如何激发水

以及它们形成什么样的
独特模式。

原来不同的蛋白质
状态,不同的振动,

我们可以
从分子尺度上看到用眼睛形成的不同模式。

它提供了另
一种可视化纳米级元素、

纳米级事件、纳米级特征的方法,

不仅可以像在音乐中那样用我们的耳朵,

还可以通过观察波型来使用我们的眼睛

这些波动模式会扭曲现实。

如本动画所示,
(音乐)

您可以看到我们如何使用
相机拍摄波浪的表面

并观察
环境的反射,

在这种情况下,
是雪景中的树木和刷子。

因为
这个水体有轻微的风荷载,

所以有轻微的表面波

,这些表面波
会扭曲相机记录的图像。

(音乐结束)

所以即使您可以
识别图像,也有轻微的失真。

这种扭曲,即

基于环境影响创建不同图像的直觉主义

是我们想要探索的东西

,看看我们是否可以
使用类似的概念

来通过可视化水中的蛋白质振动来了解现实
如何被扭曲或改变

对蛋白质振动

产生的水波进行成像实际上是一种
检测蛋白质的有效方法。

我们在这里所做的是,我们选择
了许多不同的蛋白质

,并在水波、水面波中将它们可视化

然后

针对每种蛋白质的数千张图像训练神经网络。

神经网络可以
通过这个训练过程学到的是:

与每种蛋白质结构相关的波形是什么?

这是
其中一个示例的外观。

你可以看到由于蛋白质振动,表面形成了一种非常有趣的
先天模式

因此
,蛋白质

的这些机械振动导致了这些表面波

,进而产生了
非常有趣的图案

,可以用眼睛
或高速相机捕捉到。 正如我之前提到的,

每种蛋白质
都有独特的振动谱

你可以
在我播放的音乐中听到这一点。

这是同一想法的图形视觉
表示。

您可以在此条形图中看到
两种不同蛋白质的指纹。

在左侧,
它是一种名为 6m17 的蛋白质,

这是

COVID-19 病原体
与人体细胞结合的情况。

在右侧,
您会看到一种名为 6m18 的蛋白质。


病毒没有附着在人体细胞上时就是这种情况。

所以在右手边,没有被感染;
左侧,被感染。

这种蛋白质

是了解
COVID-19 感染人体过程的一个非常重要的方面。

我们已经针对许多不同的蛋白质训练了一个神经网络

并检测到了表面波。

我们现在可以做另一个实验

,拍摄或记录与不同蛋白质相关的表面波的照片,

并使用神经网络来分类

是哪种
蛋白质引起了这些表面波。

事实上,该方法非常有效。

你可以在左边看到,
它是一种叫做 107m 的蛋白质。

这种蛋白质
呈褐色。

你可以在这个条形图中看到,这种情况

下预测的最高概率
是棕色

,实际上,它反映了
这种特殊的蛋白质,107m。

这是目前概率最高的。

所以模型完全
能够预测结构。

你可以浏览整个图表
,看到每一个案例

,最高的预测,到目前为止,

反映了引起振动的实际蛋白质

因此,该方法能够

通过查看
表面波的图像,

立即检测出
导致这些振动的潜在蛋白质是什么。

我们来看看中间部分。

6m17 和 6m18 是
前面显示的蛋白质。

这些是感染阶段,

此时 COVID-19 病原体

与人体之间开始发生分子相互作用。

6m17为附着状态;
6m18是分离状态。

即使结构
非常相似——正如你在上一张图片中

看到的,只有非常轻微的
分子

变化和振动光谱的非常轻微的变化

——

该方法
能够很好地发现差异。

6m18 中概率最高的
是浅蓝色,

它反映了那个特定的结构。

所以它能够预测。

6m17 是绿色的颜色
和相同的想法。

这种特殊结构的概率最高。

因此,该方法不仅可以区分
许多不同类别的蛋白质——

小的、大的——而且还可以通过这些表面波描述

振动光谱中

非常细微的差异
,蛋白质折叠状态的非常细微的差异

我们可以使用这种方法来开发
一种称为蛋白质起始论的方法。

我们可以尝试看看
是否可以

在其他图像中的蛋白质产生的水中的这些表面波中找到模式。

拍摄山景,
也许拍摄湖泊,

拍摄
我们肉眼能看到的任何东西,

我们可以拍照并
确定我们是否可以看到

这些蛋白质振动中所见的一些先天特征,这些特征也

影响
到其他表面波 系统。

我们在哪里以及如何识别
其他日常物体中的分子振动?

我们使用 DeepDream 算法来做到这一点

,并将我们训练过的神经网络应用于

所有这些不同的
蛋白质振动。

你可以在这里看到一张图片。

这就是振动
光谱

在这种水波表面结构中的样子、嵌入和实现方式。

如果我们将蛋白质
初始算法应用于此

,它实际上将识别
所有这些不同模式

,这些模式是
这种特定蛋白质所独有的。

这就是神经网络的工作原理。

内层确定
该特定蛋白质独有的特征,

并检测哪种蛋白质
一直在产生振动。

我们可以使用该图像处理

来更清楚地看到这些特征

,这张图片显示

了对这些特征的处理如何
产生这些类似意大利面条的结构,

所以这些是独特的
指纹或结构

,实际上导致了
这些特殊的共振

在神经网络中。 由蛋白质初始算法生成

的神经网络中的共振

确实是一种强大的方式,可以可视化

某些特征如何被放大

并在这些图像中变得更加可见、放大
和共振。

就像吉他等乐器中发生共振一样,

在这里我们可以将共振

视为最终
由分子振动产生的图像。

现在,如果我们看另一种
情况,河流中有水波——

这是原始图片

——这些波现在
不是由蛋白质引起的,

这些波实际上
是由流过岩石的水引起的

,你可以 看看算法是如何
在这些水波中提取某些特征的,这些特征

再次不是
因为蛋白质

而发生的,而是具有与
蛋白质引起的水波中看到的相似的特征。

同样,通过对图像进行一些处理,

您可以
看到出现了某种模式。

这些都是
意大利面条状结构的所有区域

,算法检测由这些蛋白质振动引起
的内部详细结构的共振

因此,
在河流中也可以看到蛋白质振动。

这是一个沿海景观的例子
,我们有三个元素。

我们有水,我们有岩石
,我们有空气。

而事实上,该算法在所有三个元素中都检测到
了蛋白质振动的这些特征

——

其中一些在水波中,
这并不奇怪,

因为它们都是水波。

我们还看到其中一些想法
在岩石中很相似。

岩石中的某些特征、某些模式

与蛋白质中的相似。

我们还可以看到其中一些
在天空中被捡起。

再一次,这是
使用图像处理的分析

,你可以看到在图像中

我们可以拾取
自然特征的位置,

这些特征是蛋白质振动所固有的。

物质就是声音,声音就是物质。

事实上,我们已经看到,当我们
考虑材料的表示时,

我们可以将其
视为振动的集合。

我们可以让它听得见。

我们还可以使振动
在其他物质状态中可见,

例如在液体中,在水中,
例如,作为表面波。

我们可以利用
各种操纵物质的方法,

通过创造新的声音

或使用

声音来检测
现有音乐作品中的信息来创造新的材料。

所以你可以问一个问题:

贝多芬
通过分析他的作品创造了什么样的材料?

我们还可以以其他形式看到蛋白质振动
或蛋白质振动

的特征,即振动谱的独特特征

使用蛋白质起始论
作为算法,

我们已经能够
证明这些振动

不仅可以在水波中看到,
而且可以在其他物质状态中看到。

它们可以在风景中看到。

它们可以在植物中看到。

他们可以在天空和雪地
和许多其他元素中看到。

非常感谢您的关注。