How quantum physics can make encryption stronger Vikram Sharma

Recently, we’ve seen the effects
of cyber attacks on the business world.

Data breaches at companies like JP Morgan,
Yahoo, Home Depot and Target

have caused losses of hundreds of millions

and in some cases, billions of dollars.

It wouldn’t take many large attacks
to ravage the world economy.

And the public sector
has not been immune, either.

In 2012 to 2014,

there was a significant data breach
at the US Office of Personnel Management.

Security clearance
and fingerprint data was compromised,

affecting 22 million employees.

And you may have heard of the attempt
by state-sponsored hackers

to use stolen data to influence election
outcomes in a number of countries.

Two recent examples are
the compromise of a large amount of data

from the Bundestag,
the national Parliament of Germany,

and the theft of emails from the US
Democratic National Committee.

The cyber threat is now affecting
our democratic processes.

And it’s likely to get worse.

As computer technology
is becoming more powerful,

the systems we use to protect our data
are becoming more vulnerable.

Adding to the concern
is a new type of computing technology,

called quantum computing,

which leverages microscopic
properties of nature

to deliver unimaginable increases
in computational power.

It’s so powerful that it will crack
many of the encryption systems

that we use today.

So is the situation hopeless?

Should we start packing
our digital survival gear

and prepare for an upcoming
data apocalypse?

I would say, not yet.

Quantum computing is still in the labs,

and it will take a few years
until it’s put to practical applications.

More important,

there have been major breakthroughs
in the field of encryption.

For me, this is
a particularly exciting time

in the history of secure communications.

About 15 years ago,

when I learned of our new-found ability

to create quantum effects
that don’t exist in nature,

I was excited.

The idea of applying
the fundamental laws of physics

to make encryption stronger

really intrigued me.

Today, a select groups of companies
and labs around the world, including mine,

are maturing this technology
for practical applications.

That’s right.

We are now preparing
to fight quantum with quantum.

So how does this all work?

Well, first, let’s take a quick tour
of the world of encryption.

For that, you’ll need a briefcase,

some important documents that you want
to send your friend, James Bond,

and a lock to keep it all safe.

Because the documents are top secret,
we’re going to use an advanced briefcase.

It has a special combination lock

which, when closed,

converts all the text
in the documents to random numbers.

So you put your documents inside,
close the lock –

at which point in time the documents
get converted to random numbers –

and you send the briefcase to James.

While it’s on its way,
you call him to give him the code.

When he gets the briefcase,
he enters the code,

the documents get unscrambled, and voilà,

you’ve just sent
an encoded message to James Bond.

(Laughter)

A fun example, but it does illustrate
three things important for encryption.

The code – we call this
an encryption key.

You can think of it as a password.

The call to James to give him
the code for the combination lock.

We call this key exchange.

This is how you ensure

you get the encryption key
securely to the right place.

And the lock, which encodes
and decodes the document.

We call this an encryption algorithm.

Using the key, it encodes
the text in the documents

to random numbers.

A good algorithm will encode in such a way

that without the key
it’s very difficult to unscramble.

What makes encryption so important

is that if someone were to capture
the briefcase and cut it open

without the encryption key
and the encryption algorithm,

they wouldn’t be able
to read the documents.

They would look like nothing more
than a bunch of random numbers.

Most security systems rely
on a secure method for key exchange

to communicate the encryption key
to the right place.

However, rapid increases
in computational power

are putting at risk a number
of the key exchange methods we have today.

Consider one of the very
widely used systems today – RSA.

When it was invented, in 1977,

it was estimated that it would take
40 quadrillion years

to break a 426-bit RSA key.

In 1994, just 17 years later,

the code was broken.

As computers have become
more and more powerful,

we’ve had to use larger and larger codes.

Today we routinely use 2048 or 4096 bits.

As you can see, code makers and breakers
are engaged in an ongoing battle

to outwit each other.

And when quantum computers arrive
in the next 10 to 15 years,

they will even more rapidly
crack the complex mathematics

that underlies many
of our encryption systems today.

Indeed, the quantum computer is likely
to turn our present security castle

into a mere house of cards.

We have to find a way
to defend our castle.

There’s been a growing
body of research in recent years

looking at using quantum effects
to make encryption stronger.

And there have been
some exciting breakthroughs.

Remember those three things
important for encryption –

high-quality keys, secure key exchange
and a strong algorithm?

Well, advances in science and engineering

are putting two of those
three elements at risk.

First of all, those keys.

Random numbers are the foundational
building blocks of encryption keys.

But today, they’re not truly random.

Currently, we construct encryption keys

from sequences of random numbers
generated from software,

so-called pseudo-random numbers.

Numbers generated by a program
or a mathematical recipe

will have some, perhaps subtle,
pattern to them.

The less random the numbers are,

or in scientific terms,
the less entropy they contain,

the easier they are to predict.

Recently, several casinos
have been victims of a creative attack.

The output of slot machines
was recorded over a period of time

and then analyzed.

This allowed the cyber criminals

to reverse engineer
the pseudo-random number generator

behind the spinning wheels.

And allowed them, with high accuracy,
to predict the spins of the wheels,

enabling them to make big financial gains.

Similar risks apply to encryption keys.

So having a true random number generator
is essential for secure encryption.

For years, researchers have been looking
at building true random number generators.

But most designs to date
are either not random enough,

fast enough or aren’t easily repeatable.

But the quantum world is truly random.

So it makes sense to take advantage
of this intrinsic randomness.

Devices that can measure quantum effects

can produce an endless stream
of random numbers at high speed.

Foiling all those
would-be casino criminals.

A select group of universities
and companies around the world

are focused on building
true random number generators.

At my company, our quantum
random number generator

started life on a two meter
by one meter optic table.

We were then able to reduce it
to a server-size box.

Today, it’s miniaturized into a PCI card
that plugs into a standard computer.

This is the world’s fastest
true random number generator.

It measures quantum effects to produce
a billion random numbers per second.

And it’s in use today to improve security

at cloud providers, banks
and government agencies

around the world.

(Applause)

But even with a true
random number generator,

we’ve still got the second
big cyber threat:

the problem of secure key exchange.

Current key exchange techniques
will not stand up to a quantum computer.

The quantum solution to this problem

is called quantum key distribution or QKD,

which leverages a fundamental,
counterintuitive characteristic

of quantum mechanics.

The very act of looking
at a quantum particle changes it.

Let me give you an example
of how this works.

Consider again exchanging the code
for the lock with James Bond.

Except this time, instead of a call
to give James the code,

we’re going to use quantum effects
on a laser to carry the code

and send it over standard
optic fiber to James.

We assume that Dr. No
is trying to hack the exchange.

Luckily, Dr. No’s attempt to intercept
the quantum keys while in transit

will leave fingerprints
that James and you can detect.

This allows those intercepted keys
to be discarded.

The keys which are then retained

can be used to provide
very strong data protection.

And because the security is based
on the fundamental laws of physics,

a quantum computer, or indeed
any future supercomputer

will not be able to break it.

My team and I are collaborating
with leading universities

and the defense sector

to mature this exciting technology

into the next generation
of security products.

The internet of things
is heralding a hyperconnected era

with 25 to 30 billion
connected devices forecast by 2020.

For the correct functioning
of our society in an IoT world,

trust in the systems that support
these connected devices is vital.

We’re betting that quantum technologies
will be essential in providing this trust,

enabling us to fully benefit
from the amazing innovations

that are going to so enrich our lives.

Thank you.

(Applause)

最近,我们看到
了网络攻击对商业世界的影响。

摩根大通、
雅虎、家得宝和塔吉特等公司的数据泄露

造成了数亿美元的损失

,在某些情况下,甚至数十亿美元。

破坏世界经济不需要很多大规模的
攻击。

公共部门
也未能幸免。

2012 年至 2014 年,美国人事管理办公室

发生了严重的数据泄露事件

安全许可
和指纹数据遭到破坏,

影响了 2200 万员工。

您可能听说过
国家资助的黑客

企图利用被盗数据影响
多个国家的选举结果。

最近的两个例子是来自德国联邦议院
的大量数据被泄露

以及来自美国
民主党全国委员会的电子邮件被盗。

网络威胁现在正在影响
我们的民主进程。

而且情况可能会变得更糟。

随着计算机
技术变得越来越强大,

我们用来保护数据
的系统变得越来越脆弱。

更令人担忧的
是一种称为量子计算的新型计算技术,

它利用
自然界的微观特性

来提供难以想象
的计算能力增长。

它非常强大,可以破解

我们今天使用的许多加密系统。

那么情况就没有希望了吗?

我们是否应该开始打包
我们的数字生存装备

并为即将到来的
数据末日做准备?

我会说,还没有。

量子计算仍处于实验室阶段

,需要几年
时间才能投入实际应用。

更重要的是,

加密领域有了重大突破。

对我来说,这是安全通信史上
一个特别激动人心的

时刻。

大约 15 年前,

当我得知我们新发现的

创造
自然界不存在的量子效应的能力时,

我很兴奋。

应用物理基本定律

使加密更强大的想法

真的让我很感兴趣。

今天
,包括我在内的世界各地的一些公司和实验室

正在使这项技术成熟
以用于实际应用。

那就对了。

我们现在正准备
用量子来对抗量子。

那么这一切是如何运作的呢?

好吧,首先,让我们快速
浏览一下加密世界。

为此,您需要一个公文包、

一些您想
寄给您的朋友詹姆斯·邦德的重要文件

和一把锁以确保一切安全。

因为这些文件是绝密的,
我们将使用一个高级公文包。

它有一个特殊的密码

锁,当它关闭时,


文档中的所有文本转换为随机数。

所以你把你的文件放进去,
关上锁——

在这个时间点文件
被转换成随机数——

然后你把公文包寄给詹姆斯。

当它在路上时,
你打电话给他给他密码。

当他拿到公文包时,
他输入密码

,文件被解读,瞧,

你刚刚
向詹姆斯邦德发送了一条编码信息。

(笑声)

一个有趣的例子,但它确实说明
了对加密很重要的三件事。

代码——我们
称之为加密密钥。

您可以将其视为密码。

叫詹姆斯给
他密码锁的密码。

我们称之为密钥交换。

这是您确保

将加密密钥
安全地送到正确位置的方法。

以及对文档进行编码和解码的锁。

我们称之为加密算法。

使用密钥,它将
文档中的文本编码

为随机数。

一个好的算法会以这样一种方式进行编码,

即没有密钥
就很难解读。

使加密如此重要的原因

在于,如果有人在

没有加密密钥
和加密算法的情况下抓住公文包并将其切开,

他们将
无法阅读文件。

它们看起来
只不过是一堆随机数。

大多数安全系统依赖
于一种安全的密钥交换

方法将加密密钥
传送到正确的位置。

然而,
计算能力的快速增长

使
我们今天拥有的许多关键交换方法面临风险。

考虑
当今使用非常广泛的系统之一——RSA。

当它在 1977 年被发明时,

估计需要
40 万亿年

才能破解 426 位 RSA 密钥。

1994 年,仅仅 17 年后

,密码就被破解了。

随着计算机变得
越来越强大,

我们不得不使用越来越大的代码。

今天我们通常使用 2048 或 4096 位。

如您所见,代码制定者和破坏者
正在进行一场持续的战斗,

以智取对方。

当量子计算机
在未来 10 到 15 年内问世时,

它们将更快地
破解

我们当今许多加密系统背后的复杂数学。

事实上,量子计算机很
可能将我们目前的安全城堡

变成纸牌屋。

我们必须想
办法保卫我们的城堡。

近年来,越来越多的研究致力于

利用量子
效应使加密更加强大。

并且已经取得了
一些令人兴奋的突破。

还记得
对加密很重要的三件事

——高质量的密钥、安全的密钥交换
和强大的算法吗?

嗯,科学和工程的进步

使这
三个要素中的两个处于危险之中。

首先,那些钥匙。

随机数是
加密密钥的基本组成部分。

但今天,它们并不是真正随机的。

目前,我们

从软件生成的随机数序列构建加密密钥

即所谓的伪随机数。

程序或数学配方生成的数字

会有一些,也许是微妙的
模式。

数字越不随机,

或者用科学术语来说,
它们包含的熵越少,它们就越

容易预测。

最近,几家
赌场成为创造性攻击的受害者。

在一段时间内记录老虎机的输出

,然后进行分析。

这使得网络犯罪分子

能够对纺车后面
的伪随机数生成器进行逆向工程

并允许他们高精度
地预测车轮的旋转,

从而获得巨大的经济收益。

类似的风险也适用于加密密钥。

因此,拥有真正的随机数生成
器对于安全加密至关重要。

多年来,研究人员一直
在研究构建真正的随机数生成器。

但迄今为止,大多数设计
要么不够随机、

不够快,要么不容易重复。

但量子世界确实是随机的。

因此,
利用这种内在的随机性是有意义的。

可以测量量子效应的设备

可以高速产生无穷无尽
的随机数流。

挫败所有那些
潜在的赌场罪犯。

世界各地的一些大学
和公司

都专注于构建
真正的随机数生成器。

在我的公司,我们的量子
随机数发生器

在两米
乘一米的光学台上开始使用。

然后,我们能够将其缩小
到服务器大小的盒子。

如今,它已小型化为
可插入标准计算机的 PCI 卡。

这是世界上最快的
真随机数生成器。

它测量量子效应以
每秒产生十亿个随机数。

如今,它已用于提高全球

云提供商、银行
和政府机构的安全性

(掌声)

但是即使有了真正的
随机数生成器,

我们仍然
面临第二大网络威胁

:安全密钥交换问题。

当前的密钥交换
技术经不起量子计算机的考验。

这个问题的量子解决方案

称为量子密钥分配或 QKD,

它利用了量子力学的一个基本的、
违反直觉的特性

观察量子粒子的行为本身就改变了它。

让我举一个例子
来说明它是如何工作的。

再次考虑
与詹姆斯·邦德交换锁的密码。

除了这一次,

我们将使用
激光上的量子效应来携带代码

并通过标准光纤将其发送给詹姆斯,而不是打电话
给詹姆斯。

我们假设 No 博士
正试图入侵交易所。

幸运的是,诺博士
在传输过程中拦截量子密钥的尝试

会留下
詹姆斯和你可以检测到的指纹。

这允许丢弃那些截获的
密钥。

然后保留的密钥

可用于提供
非常强大的数据保护。

而且由于安全性是
基于物理的基本定律

,量子计算机,或者实际上
任何未来的超级计算机

都无法破解它。

我和我的团队正在
与领先的大学

和国防部门

合作,以使这项令人兴奋的技术成熟


下一代安全产品中。


联网预示着一个超连接时代

,预计到 2020 年将有 25 到 300 亿台
连接设备。

为了
在物联网世界中我们社会的正常运作,对

支持
这些连接设备的系统的信任至关重要。

我们打赌,量子
技术对于提供这种信任至关重要,

使我们能够充分受益
于令人惊叹的创新

,这些创新将丰富我们的生活。

谢谢你。

(掌声)