The Era of Quantum Computing

[Music]

have you ever thought about what you

could do if you were given a chance to

go back in time

and time to say prepare yourselves for

the internet

this is what’s happening with quantum

computing now and you’re given the

opportunity to do something big about it

what we see in our daily lives and how

we see things work

differ greatly from the world of quantum

one thing that i want you to walk away

today from this talk

is that we might not be able to see

quantum

but we will need quantum to understand

the world we live in

before you start to wander and start

thinking about how abstract this idea

can be

think about how we already use both

classical and quantum physics in our

everyday lives

we currently make use of information

that is encoded into classical systems

like our smartphones our computers

through the internet

satellites and the way we build these

systems respond to our increasing needs

to process data

with quality and accuracy in real time

we benefit from classical computing

every day

we process patterns from data that are

stored and manipulated in systems

but there is a huge constraint with the

compute power we have today

the chips that run on your computers

smartphones and electronics are becoming

so

small with increasing power that will

soon be hitting a physical limit to

building

better and faster systems

problems like designing new molecules

and drug discovery

or finding the most optimized route in

logistics

problems that grow so large in size

where our computers and even the world’s

fastest super computers are not able to

solve and process this amount of

information

we would need years or even a timeline

that is beyond our lifetime to compute

and find solutions to these problems

this is why we need an entirely

different and new breed of computers to

understand the complex world we live in

and bring us past the limitations of

classical computing we have today

our world is ultimately made up of these

small building blocks like

electrons and the atoms we know of but

do not see

and because the fundamental laws of

physics is quantum mechanical

nature can only be explained at a very

small scale

with quantum which governs the behavior

of particles that are not visible to the

human eye

we know a lot about classical bits where

strings of information are processed

on current classical computers in zeros

and ones

quantum computing uses quantum

mechanical properties of superposition

and entanglement to do the same except

using

what we call qubits

and instead of processing things one

after another

qubits can store and process a huge

amount of information

in combinations of multiple states at

once imagine if you were given a problem

with millions of different pathways of

finding the solutions

and instead of solving this with one

trial after another

as with classical bits you can

try out all possible pathways and

perform the calculations simultaneously

saving both time and resources

as well as finding the results more

accurately and effectively

one way we can fabricate these qubits is

to have them manipulated in an

isolated encoded then space environment

to maintain the superposition and

entanglement properties

which are only available in a subatomic

quantum space

and because of how we can use these

properties to process information

potential speed ups and solving problems

that scale to exponentially large

values quantum computers will be more

powerful than anything possible with a

classical computer

we’ve been hearing the word quantum a

lot today

well of course we are on the topic of

quantum computing

small scale operating at extremely low

temperatures to maintain quantum states

can’t be observed with the visible eye

so how exactly will quantum computers

impact

our lives to better understand this

the goal of quantum information is to

find out what properties the information

has and how these properties can be put

into new and remarkable uses

the compute power will allow for new

breakthroughs and advances across

all industries for example in medicine

to diagnose illnesses in a quicker

manner

developing faster search algorithms to

direct resources effectively

in say supply chain

in finance to create machine learning

models to optimize portfolios

and even understanding the nitrogen

fixation process we

we don’t know about today better and

create fertilizers which currently uses

an estimate of one to two percent of the

world’s energy consumption

to ultimately address sustainability and

climate change

or even looking into something that is a

little closer to our hearts right now in

light of this pandemic

is that designing a drug requires

massive amounts of computational

resources

that would take more than the entire

universe to perform on a classical

computer

and take millions or even billions of

years to identify the right molecules

which in comparison could take just days

or hours on a quantum computer

quantum technology seems so distant a

century ago

where we are now very lucky to be in an

era where the world’s first quantum

computer was put

on the cloud for free public access in

2016 by ibm

and developments are happening so

rapidly at a rate where we can possibly

see advantages of quantum

over classical in the next few years

with a roadmap of over a hundred a

thousand cubit quantum computer in 2023

this will still be relatively small to

tap into the full potential of quantum

computing

but large enough to maintain the logical

qubits for a significant milestone in

developing a full-scale quantum computer

we’re seeing billions of quantum

circuits executed on the ibm quantum

cloud around the world

an increasing number of papers being

written

hundreds of university courses have

included quantum in their education

and fortune 500 companies government

startups academia and national labs are

working together to accelerate research

develop commercial applications as well

as educating and preparing the industry

for this era

the biggest challenge in quantum

computing right now is to build a fault

tolerant quantum computer to be able to

solve

all these problems it’s not just about

how many qubits you can fit on a quantum

computer

the system also has to take into account

error correction

to the noisy environment of these

machines

to encode the data with sufficient

fidelity maintaining the isolated

sub-zero temperatures

how the qubits are entangled as well as

many other factors contributing to the

computational power of a quantum

computer

this is why on top of the hardware the

companies are already building

the software and algorithms developed to

run circuits and explore applications

have equal significance at this stage

there is a huge community contributing

and working on

exploring the different potential use

cases

developing software writing algorithms

error correcting methods and different

applications

what we need now is to hire talents from

designing hardware

to the developing software and business

leaders leaders need to be

prepared for this era quantum

technologies are being invested heavily

across the world

there will be solutions and use cases

that we haven’t thought of yet

this hopefully gives you an insight of

where quantum is at now

and how you can get started today to

contribute and equip skills that you

need for this exciting era what will you

do with quantum computers

[音乐]

你有没有想过,

如果你有机会

回到过去

,让自己为互联网做好准备,

这就是量子计算正在发生的事情

,你有

机会做某事 重要的

是我们在日常生活中

看到的东西以及我们如何看待事物的工作方式

与量子世界有很大不同

我希望你今天从这次演讲中走开的一件事

是我们可能无法看到

量子

但我们需要

在你开始徘徊并开始

思考这个想法有多抽象之前了解我们生活的世界

想想我们如何在日常生活中已经使用

经典物理学和量子物理学

我们目前使用

编码到经典系统中的信息

就像我们的智能手机一样,我们的计算机

通过互联网

卫星以及我们构建这些系统的方式

响应了我们日益增长

的实时处理高质量和准确数据的需求

我们 b 我们每天都从经典计算中受益,

我们处理系统中存储和操作的数据的模式,

但是我们今天拥有的计算能力存在巨大的限制,

在您的计算机上运行的芯片

智能手机和电子产品变得越来越

小,而功率越来越大,

很快就会达到物理极限来

构建

更好更快的系统

问题,例如设计新分子

和药物发现,

或者在物流问题中找到最优化的路线,这些

问题变得如此庞大

,我们的计算机甚至世界上

最快的超级计算机都

无法解决 并处理

我们需要数年甚至

超出我们一生的时间线来计算

和找到这些问题的解决方案的大量信息

这就是为什么我们需要一种完全

不同的新型计算机来

了解我们生活的复杂世界

并带来 我们超越了

我们今天拥有的经典计算的限制

我们的世界最终是由 这些

小构件如

电子和我们知道但看不到的原子

,因为物理的基本定律

是量子力学

性质只能在非常

小的尺度上

用量子来解释,它控制

着不可见粒子的行为

人眼

我们对经典位了解很多,其中

信息串

在当前经典计算机上以零

和一的形式处理

一个又一个

量子比特可以同时存储和处理

多种状态组合的大量信息

可以

尝试所有可能的路径并

同时进行计算

节省时间和资源

以及更

准确

有效地找到结果 我们可以制造这些量子比特的一种方法

是让它们在一个

孤立的编码空间环境中

进行操作,以保持

仅在亚原子量

子空间中可用的叠加和纠缠特性

由于我们如何使用这些

属性来处理信息,

潜在的加速和

解决扩展到指数大

值的问题,量子计算机

将比使用经典计算机的任何东西都更强大,

我们今天经常听到量子这个词

当然,我们的主题是

在极低

温度下运行以保持量子状态的小规模量子计算

无法用肉眼观察到,

那么量子计算机究竟将如何

影响

我们的生活以更好地理解这一点

,量子信息的目标是

找到 找出信息具有哪些属性

以及这些属性如何 可以

投入新的和卓越的

用途 计算能力将允许

所有行业的新突破和进步

,例如在医学领域

以更快的方式诊断疾病

开发更快的搜索算法,以

有效地引导资源

,例如

金融供应链,以创建机器学习

模型来优化投资组合

,甚至

更好地了解我们今天不了解的固氮过程,并

创造出目前

使用大约 1% 到 2% 的

世界能源消耗的肥料,

以最终解决可持续性和

气候变化问题

,甚至研究一些问题 鉴于这种流行病,

现在更贴近我们的心的

是,设计一种药物需要

大量的计算

资源

,这将比整个

宇宙在经典计算机上执行的时间还要多,

并且需要数百万甚至数十亿

年才能识别 相比之下,正确的分子

可以

在量子计算机上花费几天或几个小时

量子技术在一个世纪前似乎如此遥远

,我们现在非常幸运地处于一个

世界上第一台量子

计算机

在 2016 年被 ibm 放到云上供公众免费访问的时代,

并且发展是

发展速度如此之快,我们可能会

在未来几年看到

量子计算机相对于经典计算机的优势,到 2023 年将有超过 10 万肘量子计算机的路线图,

这仍然相对较小,无法

充分发挥量子

计算的潜力

但足够大,足以维持逻辑

量子位,是

开发全尺寸量子

计算机的

重要

里程碑 量子在他们的教育

和财富 500 强公司政府

初创公司学术界和国家实验室

正在共同努力 加速研究

开发商业应用

并为这个时代教育和准备行业

目前量子计算的最大挑战是构建一个

容错量子计算机来

解决

所有这些问题,而不仅仅是

你可以容纳多少量子比特 在量子

计算机

上,系统还必须考虑

对这些机器的嘈杂环境的纠错,以便

以足够的保真度对数据进行编码,

保持孤立

的零下温度

量子比特如何纠缠以及

许多其他有助于

计算的因素

这就是为什么在硬件之上,

公司已经在构建

用于

运行电路和探索应用程序的软件和算法

在现阶段具有同等重要意义的是,

有一个庞大的社区在贡献

并致力于

探索不同的潜在用

开发软件编写算法

错误更正 方法和不同的

应用

我们现在需要的是招聘从

设计硬件

到开发软件的人才,商业

领袖需要

为这个时代做好准备 量子

技术在世界范围内得到大量投资

将会有我们拥有的解决方案和用例

还没有想到

这希望能让您

了解量子现在的位置

以及您今天如何开始

为这个激动人心的时代贡献和装备您需要的技能您将

如何使用量子计算机