Will we ever be able to teleport Sajan Saini

Is teleportation possible?

Could a baseball transform into
something like a radio wave,

travel through buildings,

bounce around corners,

and change back into a baseball?

Oddly enough, thanks to quantum mechanics,
the answer might actually be yes.

Sort of.

Here’s the trick.

The baseball itself couldn’t
be sent by radio,

but all the information about it could.

In quantum physics, atoms and electrons

are interpreted as a collection
of distinct properties,

for example, position,

momentum,

and intrinsic spin.

The values of these properties
configure the particle,

giving it a quantum state identity.

If two electrons have
the same quantum state,

they’re identical.

In a literal sense, our baseball
is defined by a collective quantum state

resulting from its many atoms.

If this quantum state information
could be read in Boston

and sent around the world,

atoms for the same chemical elements
could have this information

imprinted on them in Bangalore

and be carefully directed to assemble,

becoming the exact same baseball.

There’s a wrinkle though.

Quantum states aren’t so easy to measure.

The uncertainty principle
in quantum physics

implies the position and momentum
of a particle

can’t be measured at the same time.

The simplest way to measure
the exact position of an electron

requires scattering a particle of light,
a photon, from it,

and collecting the light in a microscope.

But that scattering changes the momentum
of the electron in an unpredictable way.

We lose all previous information
about momentum.

In a sense,
quantum information is fragile.

Measuring the information changes it.

So how can we transmit something

we’re not permitted to fully read
without destroying it?

The answer can be found in the strange
phenomena of quantum entanglement.

Entanglement is an old mystery
from the early days of quantum physics

and it’s still not entirely understood.

Entangling the spin of two electrons
results in an influence

that transcends distance.

Measuring the spin of the first electron

determines what spin will
measure for the second,

whether the two particles are a mile
or a light year apart.

Somehow, information
about the first electron’s quantum state,

called a qubit of data,

influences its partner without
transmission across the intervening space.

Einstein and his colleagues called
this strange communcation

spooky action at a distance.

While it does seem that entanglement
between two particles

helps transfer a qubit instantaneously
across the space between them,

there’s a catch.

This interaction must begin locally.

The two electrons must be entangled
in close proximity

before one of them is transported
to a new site.

By itself, quantum entanglement
isn’t teleportation.

To complete the teleport,

we need a digital message to help
interpret the qubit at the receiving end.

Two bits of data created by measuring
the first particle.

These digital bits must be transmitted
by a classical channel

that’s limited by the speed of light,
radio, microwaves, or perhaps fiberoptics.

When we measure a particle
for this digital message,

we destroy its quantum information,

which means the baseball must disappear
from Boston

for it to teleport to Bangalore.

Thanks to the uncertainty principle,

teleportation transfers the information
about the baseball

between the two cities
and never duplicates it.

So in principle, we could teleport
objects, even people,

but at present, it seems unlikely
we can measure the quantum states

of the trillion trillion or more atoms
in large objects

and then recreate them elsewhere.

The complexity of this task
and the energy needed is astronomical.

For now, we can reliably teleport
single electrons and atoms,

which may lead to super-secured
data encryption

for future quantum computers.

The philosophical implications
of quantum teleportation are subtle.

A teleported object doesn’t exactly
transport across space

like tangible matter,

nor does it exactly transmit across space,
like intangible information.

It seems to do a little of both.

Quantum physics gives us
a strange new vision

for all the matter in our universe
as collections of fragile information.

And quantum teleportation reveals
new ways to influence this fragility.

And remember, never say never.

In a little over a century,

mankind has advanced from an uncertain
new understanding

of the behavior of electrons
at the atomic scale

to reliably teleporting them
across a room.

What new technical mastery
of such phenomena

might we have in 1,000,
or even 10,000 years?

Only time and space will tell.

可以传送吗?

棒球能否变成
无线电波之类的东西,

穿过建筑物,

在拐角处反弹,

然后变回棒球?

奇怪的是,多亏了量子力学
,答案实际上可能是肯定的。

有点。

这是诀窍。

棒球本身
不能通过无线电发送,

但有关它的所有信息都可以。

在量子物理学中,原子和电子

被解释
为不同属性的集合,

例如位置、

动量

和本征自旋。

这些属性的值
配置粒子,

赋予它量子态身份。

如果两个电子
具有相同的量子态,则

它们是相同的。

从字面意义上说,我们的棒球
是由许多原子产生的集体量子态定义的

如果这种量子态信息
可以在波士顿被读取

并发送到世界各地,

那么相同化学元素的原子
可以在班加罗尔将这些信息

印在它们身上,

并被仔细引导组装,

成为完全相同的棒球。

不过有皱纹。

量子态并不那么容易测量。

量子物理学中的不确定性原理

意味着不能同时测量粒子的位置和动量

测量电子精确位置的最简单方法是从其中

散射一个光粒子,
一个光子,

然后在显微镜中收集光。

但是这种散射
以一种不可预测的方式改变了电子的动量。

我们丢失了所有先前
关于动量的信息。

从某种意义上说,
量子信息是脆弱的。

测量信息会改变它。

那么我们如何

在不破坏的情况下传输我们不允许完全阅读的
内容呢?

答案可以在
量子纠缠的奇异现象中找到。

纠缠是
量子物理学早期的一个古老谜团

,至今仍未完全理解。

纠缠两个电子的自旋会

产生超越距离的影响。

测量第一个电子的自旋决定了第二个电子的

自旋

无论这两个粒子相距一英里
还是一光年。

不知何故,
关于第一个电子的量子态的信息,

称为数据的量子比特,会

影响它的伙伴,而不会
在中间空间传输。

爱因斯坦和他的同事们将
这种奇怪的交流称为

远距离幽灵般的动作。

虽然看起来
两个粒子之间的纠缠

有助于
在它们之间的空间中瞬时传输一个量子比特,

但有一个问题。

这种互动必须在本地开始。

这两个电子必须紧密地纠缠在一起

然后才能将其中一个电子传输
到新位置。

就其本身而言,量子纠缠
不是隐形传态。

为了完成传送,

我们需要一条数字消息来帮助
解释接收端的量子比特。

通过测量第一个粒子创建的两位数据

这些数字位必须通过

受光速、
无线电、微波或光纤速度限制的经典通道传输。

当我们测量
这个数字信息的粒子时,

我们会破坏它的量子信息,

这意味着棒球必须

波士顿消失,才能传送到班加罗尔。

由于不确定性原理,

传送在两个城市之间传输有关棒球的信息

并且从不复制。

所以原则上,我们可以传送
物体,甚至是人,

但目前,我们似乎不太
可能测量大型物体

中万亿或更多原子
的量子态

,然后在其他地方重新创造它们。

这项任务的复杂性
和所需的能量是天文数字。

目前,我们可以可靠地传送
单个电子和原子,

这可能会为未来的量子计算机带来超级安全的
数据加密

量子隐形传态的哲学含义是微妙的。

一个被传送的物体并不

像有形物质

那样精确地在空间中传输,也不像无形信息那样精确地在空间中传输

它似乎两者兼而有之。

量子物理学为我们提供了
一个奇怪的新视野

,将我们宇宙中的所有物质
视为脆弱信息的集合。

量子隐形传态揭示
了影响这种脆弱性的新方法。

记住,永远不要说永远。

在一个多世纪的时间里,

人类已经从对原子尺度电子行为的不确定的
新理解

发展

到可靠地传送它们
穿过房间。

1000 年,甚至 10000 年,我们可能对这些现象有什么新的技术掌握

只有时间和空间会告诉我们。