How Quantum Biology Might Explain Lifes Biggest Questions Jim AlKhalili TED Talks

I’d like to introduce you
to an emerging area of science,

one that is still speculative
but hugely exciting,

and certainly one
that’s growing very rapidly.

Quantum biology
asks a very simple question:

Does quantum mechanics –

that weird and wonderful
and powerful theory

of the subatomic world
of atoms and molecules

that underpins so much
of modern physics and chemistry –

also play a role inside the living cell?

In other words: Are there processes,
mechanisms, phenomena

in living organisms
that can only be explained

with a helping hand
from quantum mechanics?

Now, quantum biology isn’t new;

it’s been around since the early 1930s.

But it’s only in the last decade or so
that careful experiments –

in biochemistry labs,
using spectroscopy –

have shown very clear, firm evidence
that there are certain specific mechanisms

that require quantum mechanics
to explain them.

Quantum biology brings together
quantum physicists, biochemists,

molecular biologists –
it’s a very interdisciplinary field.

I come from quantum physics,
so I’m a nuclear physicist.

I’ve spent more than three decades

trying to get my head
around quantum mechanics.

One of the founders
of quantum mechanics, Niels Bohr,

said, If you’re not astonished by it,
then you haven’t understood it.

So I sort of feel happy
that I’m still astonished by it.

That’s a good thing.

But it means I study the very
smallest structures in the universe –

the building blocks of reality.

If we think about the scale of size,

start with an everyday object
like the tennis ball,

and just go down orders
of magnitude in size –

from the eye of a needle down to a cell,
down to a bacterium, down to an enzyme –

you eventually reach the nano-world.

Now, nanotechnology may be
a term you’ve heard of.

A nanometer is a billionth of a meter.

My area is the atomic nucleus,
which is the tiny dot inside an atom.

It’s even smaller in scale.

This is the domain of quantum mechanics,

and physicists and chemists
have had a long time

to try and get used to it.

Biologists, on the other hand,
have got off lightly, in my view.

They are very happy with their
balls-and-sticks models of molecules.

(Laughter)

The balls are the atoms, the sticks
are the bonds between the atoms.

And when they can’t build them
physically in the lab,

nowadays, they have
very powerful computers

that will simulate a huge molecule.

This is a protein made up
of 100,000 atoms.

It doesn’t really require much in the way
of quantum mechanics to explain it.

Quantum mechanics
was developed in the 1920s.

It is a set of beautiful and powerful
mathematical rules and ideas

that explain the world of the very small.

And it’s a world that’s very different
from our everyday world,

made up of trillions of atoms.

It’s a world built
on probability and chance.

It’s a fuzzy world.

It’s a world of phantoms,

where particles can also behave
like spread-out waves.

If we imagine quantum mechanics
or quantum physics, then,

as the fundamental
foundation of reality itself,

then it’s not surprising that we say

quantum physics underpins
organic chemistry.

After all, it gives us
the rules that tell us

how the atoms fit together
to make organic molecules.

Organic chemistry,
scaled up in complexity,

gives us molecular biology,
which of course leads to life itself.

So in a way, it’s sort of not surprising.

It’s almost trivial.

You say, “Well, of course life ultimately
must depend of quantum mechanics.”

But so does everything else.

So does all inanimate matter,
made up of trillions of atoms.

Ultimately, there’s a quantum level

where we have to delve into
this weirdness.

But in everyday life,
we can forget about it.

Because once you put together
trillions of atoms,

that quantum weirdness
just dissolves away.

Quantum biology isn’t about this.

Quantum biology isn’t this obvious.

Of course quantum mechanics
underpins life at some molecular level.

Quantum biology is about looking
for the non-trivial –

the counterintuitive ideas
in quantum mechanics –

and to see if they do, indeed,
play an important role

in describing the processes of life.

Here is my perfect example
of the counterintuitiveness

of the quantum world.

This is the quantum skier.

He seems to be intact,
he seems to be perfectly healthy,

and yet, he seems to have gone around
both sides of that tree at the same time.

Well, if you saw tracks like that

you’d guess it was some
sort of stunt, of course.

But in the quantum world,
this happens all the time.

Particles can multitask,
they can be in two places at once.

They can do more than one thing
at the same time.

Particles can behave
like spread-out waves.

It’s almost like magic.

Physicists and chemists have had
nearly a century

of trying to get used to this weirdness.

I don’t blame the biologists

for not having to or wanting
to learn quantum mechanics.

You see, this weirdness is very delicate;

and we physicists work very hard
to maintain it in our labs.

We cool our system down
to near absolute zero,

we carry out our experiments in vacuums,

we try and isolate it
from any external disturbance.

That’s very different from the warm,
messy, noisy environment of a living cell.

Biology itself, if you think of
molecular biology,

seems to have done very well
in describing all the processes of life

in terms of chemistry –
chemical reactions.

And these are reductionist,
deterministic chemical reactions,

showing that, essentially, life is made
of the same stuff as everything else,

and if we can forget about quantum
mechanics in the macro world,

then we should be able to forget
about it in biology, as well.

Well, one man begged
to differ with this idea.

Erwin Schrödinger,
of Schrödinger’s Cat fame,

was an Austrian physicist.

He was one of the founders
of quantum mechanics in the 1920s.

In 1944, he wrote a book
called “What is Life?”

It was tremendously influential.

It influenced Francis Crick
and James Watson,

the discoverers of the double-helix
structure of DNA.

To paraphrase a description
in the book, he says:

At the molecular level,
living organisms have a certain order,

a structure to them that’s very different

from the random thermodynamic jostling
of atoms and molecules

in inanimate matter
of the same complexity.

In fact, living matter seems to behave
in this order, in a structure,

just like inanimate matter
cooled down to near absolute zero,

where quantum effects
play a very important role.

There’s something special
about the structure – the order –

inside a living cell.

So, Schrödinger speculated that maybe
quantum mechanics plays a role in life.

It’s a very speculative,
far-reaching idea,

and it didn’t really go very far.

But as I mentioned at the start,

in the last 10 years, there have been
experiments emerging,

showing where some of these
certain phenomena in biology

do seem to require quantum mechanics.

I want to share with you
just a few of the exciting ones.

This is one of the best-known
phenomena in the quantum world,

quantum tunneling.

The box on the left shows
the wavelike, spread-out distribution

of a quantum entity –
a particle, like an electron,

which is not a little ball
bouncing off a wall.

It’s a wave that has a certain probability
of being able to permeate

through a solid wall, like a phantom
leaping through to the other side.

You can see a faint smudge of light
in the right-hand box.

Quantum tunneling suggests that a particle
can hit an impenetrable barrier,

and yet somehow, as though by magic,

disappear from one side
and reappear on the other.

The nicest way of explaining it is
if you want to throw a ball over a wall,

you have to give it enough energy
to get over the top of the wall.

In the quantum world,
you don’t have to throw it over the wall,

you can throw it at the wall,
and there’s a certain non-zero probability

that it’ll disappear on your side,
and reappear on the other.

This isn’t speculation, by the way.

We’re happy – well, “happy”
is not the right word –

(Laughter)

we are familiar with this.

(Laughter)

Quantum tunneling
takes place all the time;

in fact, it’s the reason our Sun shines.

The particles fuse together,

and the Sun turns hydrogen
into helium through quantum tunneling.

Back in the 70s and 80s, it was discovered
that quantum tunneling also takes place

inside living cells.

Enzymes, those workhorses of life,
the catalysts of chemical reactions –

enzymes are biomolecules that speed up
chemical reactions in living cells,

by many, many orders of magnitude.

And it’s always been a mystery
how they do this.

Well, it was discovered

that one of the tricks that enzymes
have evolved to make use of,

is by transferring subatomic particles,
like electrons and indeed protons,

from one part of a molecule
to another via quantum tunneling.

It’s efficient, it’s fast,
it can disappear –

a proton can disappear from one place,
and reappear on the other.

Enzymes help this take place.

This is research that’s been
carried out back in the 80s,

particularly by a group
in Berkeley, Judith Klinman.

Other groups in the UK
have now also confirmed

that enzymes really do this.

Research carried out by my group –

so as I mentioned,
I’m a nuclear physicist,

but I’ve realized I’ve got these tools
of using quantum mechanics

in atomic nuclei, and so can apply
those tools in other areas as well.

One question we asked

is whether quantum tunneling
plays a role in mutations in DNA.

Again, this is not a new idea;
it goes all the way back to the early 60s.

The two strands of DNA,
the double-helix structure,

are held together by rungs;
it’s like a twisted ladder.

And those rungs of the ladder
are hydrogen bonds –

protons, that act as the glue
between the two strands.

So if you zoom in, what they’re doing
is holding these large molecules –

nucleotides – together.

Zoom in a bit more.

So, this a computer simulation.

The two white balls
in the middle are protons,

and you can see that
it’s a double hydrogen bond.

One prefers to sit on one side;
the other, on the other side

of the two strands of the vertical lines
going down, which you can’t see.

It can happen that
these two protons can hop over.

Watch the two white balls.

They can jump over to the other side.

If the two strands of DNA then separate,
leading to the process of replication,

and the two protons
are in the wrong positions,

this can lead to a mutation.

This has been known for half a century.

The question is: How likely
are they to do that,

and if they do, how do they do it?

Do they jump across,
like the ball going over the wall?

Or can they quantum-tunnel across,
even if they don’t have enough energy?

Early indications suggest that
quantum tunneling can play a role here.

We still don’t know yet
how important it is;

this is still an open question.

It’s speculative,

but it’s one of those questions
that is so important

that if quantum mechanics
plays a role in mutations,

surely this must have big implications,

to understand certain types of mutations,

possibly even those that lead
to turning a cell cancerous.

Another example of quantum mechanics
in biology is quantum coherence,

in one of the most
important processes in biology,

photosynthesis: plants
and bacteria taking sunlight,

and using that energy to create biomass.

Quantum coherence is the idea
of quantum entities multitasking.

It’s the quantum skier.

It’s an object that behaves like a wave,

so that it doesn’t just move
in one direction or the other,

but can follow multiple pathways
at the same time.

Some years ago,
the world of science was shocked

when a paper was published
showing experimental evidence

that quantum coherence
takes place inside bacteria,

carrying out photosynthesis.

The idea is that the photon,
the particle of light, the sunlight,

the quantum of light
captured by a chlorophyll molecule,

is then delivered to what’s called
the reaction center,

where it can be turned into
chemical energy.

And in getting there,
it doesn’t just follow one route;

it follows multiple pathways at once,

to optimize the most efficient way
of reaching the reaction center

without dissipating as waste heat.

Quantum coherence taking place
inside a living cell.

A remarkable idea,

and yet evidence is growing almost weekly,
with new papers coming out,

confirming that this
does indeed take place.

My third and final example
is the most beautiful, wonderful idea.

It’s also still very speculative,
but I have to share it with you.

The European robin
migrates from Scandinavia

down to the Mediterranean, every autumn,

and like a lot of other
marine animals and even insects,

they navigate by sensing
the Earth’s magnetic field.

Now, the Earth’s magnetic field
is very, very weak;

it’s 100 times weaker
than a fridge magnet,

and yet it affects the chemistry –
somehow – within a living organism.

That’s not in doubt –
a German couple of ornithologists,

Wolfgang and Roswitha Wiltschko,
in the 1970s, confirmed that indeed,

the robin does find its way by somehow
sensing the Earth’s magnetic field,

to give it directional information –
a built-in compass.

The puzzle, the mystery was:
How does it do it?

Well, the only theory in town –

we don’t know if it’s the correct theory,
but the only theory in town –

is that it does it via something
called quantum entanglement.

Inside the robin’s retina –

I kid you not – inside the robin’s retina
is a protein called cryptochrome,

which is light-sensitive.

Within cryptochrome, a pair of electrons
are quantum-entangled.

Now, quantum entanglement
is when two particles are far apart,

and yet somehow remain
in contact with each other.

Even Einstein hated this idea;

he called it “spooky action
at a distance.”

(Laughter)

So if Einstein doesn’t like it,
then we can all be uncomfortable with it.

Two quantum-entangled electrons
within a single molecule

dance a delicate dance

that is very sensitive
to the direction the bird flies

in the Earth’s magnetic field.

We don’t know if it’s
the correct explanation,

but wow, wouldn’t it be exciting
if quantum mechanics helps birds navigate?

Quantum biology is still in it infancy.

It’s still speculative.

But I believe it’s built on solid science.

I also think that
in the coming decade or so,

we’re going to start to see
that actually, it pervades life –

that life has evolved tricks
that utilize the quantum world.

Watch this space.

Thank you.

(Applause)

我想向您
介绍一个新兴的科学

领域,它仍然是推测性的,
但非常令人兴奋,

而且肯定是
一个发展非常迅速的领域。

量子生物学
提出了一个非常简单的问题:

量子力学——支撑现代物理和化学的原子和分子的亚原子世界

的怪异、奇妙
而强大的理论

——是否

也在活细胞内发挥作用?

换句话说:

生物体
中是否存在只能

借助
量子力学的帮助才能解释的过程、机制和现象?

现在,量子生物学并不新鲜。

自 1930 年代初以来就一直存在。

但只是在过去十年左右的时间里
,仔细的实验——

在生物化学实验室,
使用光谱学——

已经显示出非常清晰、确凿的证据
,表明存在某些特定的

机制需要量子力学
来解释它们。

量子生物学汇集了
量子物理学家、生物化学家、

分子生物学家——
这是一个非常跨学科的领域。

我来自量子物理学,
所以我是一名核物理学家。

我花了三十多年的时间

试图
了解量子力学。

量子力学的创始人之一尼尔斯·玻尔

说,如果你不被它震惊,
那你就没有理解它。

所以我有点高兴
,我仍然对它感到惊讶。

这是好事。

但这意味着我研究
宇宙中最小的结构——

现实的基石。

如果我们考虑尺寸的尺度,

从网球等日常用品开始,

然后再缩小几个
数量级——

从针眼到细胞
,再到细菌,再到酶 ——

你最终到达了纳米世界。

现在,纳米技术可能是
您听说过的一个术语。

一纳米是一米的十亿分之一。

我的领域是原子核,
它是原子内部的小点。

它的规模甚至更小。

这是量子力学的领域

,物理学家和化学家
已经有很长时间

尝试习惯它。

另一方面
,在我看来,生物学家已经轻车熟路了。

他们对他们
的分子球棒模型非常满意。

(笑声

) 球是原子,棍子
是原子之间的键。

当他们无法
在实验室中实际构建它们时,

如今,他们拥有
非常强大的计算机

,可以模拟一个巨大的分子。

这是一种
由 100,000 个原子组成的蛋白质。

它真的不需要
用量子力学的方式来解释它。

量子力学
是在 1920 年代发展起来的。

它是一套美丽而强大的
数学规则和思想

,解释了非常小的世界。

这是一个
与我们日常世界截然不同的世界,

由数万亿个原子组成。

这是一个建立
在概率和机会之上的世界。

这是一个模糊的世界。

这是一个充满幻象的世界

,粒子也可以
像展开的波一样表现。

如果我们将量子力学
或量子物理学想象

为现实本身的基本基础,

那么我们说

量子物理学是
有机化学的基础也就不足为奇了。

毕竟,它为我们提供
了告诉我们

原子如何组合在一起
以制造有机分子的规则。

有机化学
的复杂性扩大,

给了我们分子生物学,
这当然导致了生命本身。

所以在某种程度上,这并不奇怪。

这几乎是微不足道的。

你说,“当然,生命最终
必须依赖于量子力学。”

但其他一切也是如此。

所有
由数万亿个原子组成的无生命物质也是如此。

最终

,我们必须深入研究
这种怪异的量子水平。

但在日常生活中,
我们可以忘记它。

因为一旦你把
数万亿个原子放在一起,

这种量子怪异就会
消失。

量子生物学与此无关。

量子生物学并不是那么明显。

当然,量子力学
在某些分子水平上支撑着生命。

量子生物学是关于
寻找非平凡的

——量子力学中违反直觉的想法
——

并看看它们是否确实

在描述生命过程中发挥了重要作用。

这是我

关于量子世界反直觉的完美例子。

这是量子滑雪者。

他似乎完好无损,
他似乎非常健康

,然而,他似乎同时绕过
了那棵树的两侧。

好吧,如果您看到这样的曲目,

您当然会猜想这是
某种特技。

但在量子世界中,
这种情况一直在发生。

粒子可以多任务,
它们可以同时在两个地方。

他们可以同时做不止一件事

粒子可以表现
得像展开的波。

这几乎就像魔术一样。

物理学家和化学家已经花了
近一个世纪的时间

来尝试适应这种怪异现象。

我不怪

生物学家不必或
不想学习量子力学。

你看,这种怪异是很微妙的;

我们物理学家非常努力
地在我们的实验室中维护它。

我们将系统冷却
到接近绝对零,

我们在真空中进行实验,

我们尝试将其
与任何外部干扰隔离开来。


与活细胞温暖、凌乱、嘈杂的环境大不相同。

如果你想到分子生物学,生物学本身

似乎在用化学——化学反应
来描述生命的所有过程方面做得很好

这些是还原论的、
确定性的化学反应,

表明从本质上讲,生命是
由与其他一切事物相同的物质构成的

,如果我们可以
在宏观世界中忘记量子力学,

那么我们应该能够
在生物学中忘记它, 也是。

好吧,一个人
乞求与这个想法不同。

Erwin Schrödinger,
以薛定谔的猫而闻名,

是一位奥地利物理学家。

他是
1920 年代量子力学的创始人之一。

1944年,他写了一本书,
名为《生命是什么?

它具有巨大的影响力。

它影响了 DNA 双螺旋结构的发现者弗朗西斯·克里克
和詹姆斯·沃森

套用
书中的描述,他说:

在分子水平上,
活的有机体具有一定的顺序,

对它们来说,这种结构

与相同复杂性的无生命物质中原子和分子的随机热力学碰撞非常不同。

事实上,生命物质似乎
以这种顺序运行,在一个结构中,

就像无生命的物质
冷却到接近绝对零一样,

其中量子效应
起着非常重要的作用。 活细胞内部

的结构——秩序——有一些特别之处

因此,薛定谔推测,也许
量子力学在生命中发挥了作用。

这是一个非常投机、
影响深远的想法,

而且它并没有真正走得太远。

但正如我在开头提到的那样,

在过去的 10 年中,出现了一些
实验,

表明
生物学中的某些特定现象

似乎确实需要量子力学。

我想和你分享
一些令人兴奋的。

这是量子世界中最著名的
现象之一,

量子隧穿。

左边的方框显示
了一个量子实体的波状展开分布

——
一个粒子,就像一个电子,

它不是
一个从墙上反弹的小球。

那是一种有一定
概率能够

穿透实心墙的波浪,就像幻影
跃过另一边。

您可以
在右侧的框中看到微弱的光斑。

量子隧穿表明,一个粒子
可以撞击一个无法穿透的屏障

,但不知何故,就像魔法一样,它

从一侧消失
并重新出现在另一侧。

最好的解释方法是,
如果你想把球扔到墙上,

你必须给它足够的能量
才能越过墙顶。

在量子世界里,
你不必把它扔到墙上,

你可以把它扔到墙上,它
有一定的非零概率

会在你这边消失,
在另一边重新出现。

顺便说一下,这不是猜测。

我们很高兴——好吧,“高兴”
这个词不合适——

(笑声)

我们对此很熟悉。

(笑声)

量子隧道
一直在发生;

事实上,这就是我们的太阳发光的原因。

粒子融合在一起

,太阳
通过量子隧穿将氢变成氦。

早在 70 年代和 80 年代,人们就
发现量子隧道效应也发生

在活细胞内。

酶,生命的主力军,
化学反应的催化剂——

酶是一种生物分子,可以将
活细胞中的化学反应加速

很多很多个数量级。 他们如何做到

这一点一直是个谜

好吧,人们

发现酶
已经进化利用的技巧之一

是通过量子隧穿将亚原子粒子(
如电子和质子)

从分子的一部分
转移到另一部分。

它高效,快速,

可以消失——质子可以从一个地方消失,
然后在另一个地方重新出现。

酶有助于这种情况发生。

这是
早在 80 年代就已经进行的研究,

特别是由
伯克利的一个小组 Judith Klinman 进行的。

英国的其他
团体现在也

证实酶确实可以做到这一点。

我的团队进行的研究

——正如我所提到的,
我是一名核物理学家,

但我意识到我拥有在原子核
中使用量子力学的这些工具

,因此也可以将
这些工具应用到其他领域 .

我们提出的一个问题

是量子隧道效应是否
在 DNA 突变中起作用。

同样,这不是一个新想法。
它可以追溯到 60 年代初。

两条 DNA 链,
即双螺旋结构

,由梯级连接在一起;
它就像一个扭曲的梯子。

梯子的那些梯级
是氢键——

质子,充当
两条链之间的胶水。

所以如果你放大,他们所做的
就是把这些大分子——

核苷酸——放在一起。

再放大一点。

所以,这是一个计算机模拟。 中间

的两个白球
是质子

,你可以看到
它是一个双氢键。

一个人喜欢坐在一边;
另一个,在

两条垂直
线的另一侧向下,你看不到。

这两个质子可能会跳过。

观察两个白球。

他们可以跳到另一边。

如果两条 DNA 链随后分离,
导致复制过程,

并且两个
质子位于错误的位置,

则可能导致突变。

这已为人所知半个世纪。

问题是:
他们这样做的可能性有多大

,如果这样做,他们是如何做到的?

他们是否
像球越过墙壁一样跳跃?

或者
即使它们没有足够的能量,它们也能穿越量子隧道吗?

早期迹象表明,
量子隧穿可以在这里发挥作用。

我们仍然不知道
它有多重要;

这仍然是一个悬而未决的问题。

这是推测性的,

但这
是非常重要的问题之一

,如果量子力学
在突变中发挥作用,

那么这肯定会产生重大影响,

以了解某些类型的突变,

甚至可能
导致细胞癌变的突变。 生物学

中量子力学的另一个例子
是量子相干性,

这是
生物学中最重要的过程之一,即

光合作用:植物
和细菌吸收阳光,

并利用该能量产生生物质。

量子相干
是量子实体多任务处理的概念。

这是量子滑雪者。

它是一个表现得像波浪的物体,

因此它不仅可以
朝一个方向或另一个方向移动,

而且可以同时遵循多个路径

几年前,

当发表的一篇论文
展示

了量子相干
发生在细菌内部

进行光合作用的实验证据时,科学界震惊了。

这个想法是光子,
光的粒子,阳光,

被叶绿素分子捕获的光量子

,然后被传递到所谓
的反应中心,

在那里它可以转化为
化学能。

在到达那里时,
它不仅仅遵循一条路线。

它一次遵循多个路径,

以优化
到达反应中心的最有效方式,

而不会作为废热消散。

量子相干发生
在活细胞内。

一个了不起的想法

,但证据几乎每周都在增长
,新论文的出现

证实了这
确实发生了。

我的第三个也是最后一个例子
是最美丽、最美妙的想法。

这也是非常投机的,
但我必须与你分享。

每年秋天,欧洲知更鸟都会
从斯堪的纳维亚半岛迁徙

到地中海

,与许多其他
海洋动物甚至昆虫一样,

它们通过
感知地球磁场来导航。

现在,地球的磁场
非常非常弱;

它比冰箱磁铁弱 100 倍

,但它会
以某种方式影响生物体内的化学反应。

毫无疑问——1970 年代,
一对德国鸟类学家

Wolfgang 和 Roswitha Wiltschko
证实,事实上

,知更鸟确实通过某种方式
感知地球磁场,

为其提供方向信息——
一个内置的 罗盘。

谜团,谜团是:
它是如何做到的?

好吧,城里唯一的理论——

我们不知道它是否是正确的理论,
但城里唯一的理论——

是它通过一种叫做量子纠缠的东西来做到这一点

在知更鸟的视网膜内——

我不骗你——在知更鸟的视网膜内
有一种叫做隐花色素的蛋白质

,它对光敏感。

在隐花色素中,一对电子
是量子纠缠的。

现在,量子纠缠
是指两个粒子相距很远

,但又以某种方式保持
相互接触。

甚至爱因斯坦也讨厌这个想法。

他称之为“远处的幽灵
行动”。

(笑声)

所以如果爱因斯坦不喜欢它,
那么我们都会对此感到不舒服。 单个分子中的

两个量子纠缠电子

跳起一种微妙的舞蹈


对鸟类

在地球磁场中的飞行方向非常敏感。

我们不知道这是否
是正确的解释,

但是哇,如果量子力学帮助鸟类导航,那不是很令人兴奋
吗?

量子生物学仍处于起步阶段。

这仍然是推测性的。

但我相信它建立在坚实的科学之上。

我还认为,
在接下来的十年左右,

我们将开始看到
它实际上渗透到生命中

——生命已经进化
出利用量子世界的技巧。

关注此空间。

谢谢你。

(掌声)