How we explore unanswered questions in physics James Beacham

Translator: Leslie Gauthier
Reviewer: Camille Martínez

There is something about physics

that has been really bothering me
since I was a little kid.

And it’s related to a question

that scientists have been asking
for almost 100 years,

with no answer.

How do the smallest things in nature,

the particles of the quantum world,

match up with the largest
things in nature –

planets and stars and galaxies
held together by gravity?

As a kid, I would puzzle
over questions just like this.

I would fiddle around
with microscopes and electromagnets,

and I would read
about the forces of the small

and about quantum mechanics

and I would marvel at how well
that description matched up

to our observation.

Then I would look at the stars,

and I would read about how well
we understand gravity,

and I would think surely,
there must be some elegant way

that these two systems match up.

But there’s not.

And the books would say,

yeah, we understand a lot
about these two realms separately,

but when we try to link
them mathematically,

everything breaks.

And for 100 years,

none of our ideas as to how to solve
this basically physics disaster,

has ever been supported by evidence.

And to little old me –

little, curious, skeptical James –

this was a supremely unsatisfying answer.

So, I’m still a skeptical little kid.

Flash-forward now
to December of 2015,

when I found myself smack in the middle

of the physics world
being flipped on its head.

It all started when we at CERN
saw something intriguing in our data:

a hint of a new particle,

an inkling of a possibly extraordinary
answer to this question.

So I’m still a skeptical
little kid, I think,

but I’m also now a particle hunter.

I am a physicist at CERN’s
Large Hadron Collider,

the largest science
experiment ever mounted.

It’s a 27-kilometer tunnel
on the border of France and Switzerland

buried 100 meters underground.

And in this tunnel,

we use superconducting magnets
colder than outer space

to accelerate protons
to almost the speed of light

and slam them into each other
millions of times per second,

collecting the debris of these collisions

to search for new, undiscovered
fundamental particles.

Its design and construction
took decades of work

by thousands of physicists
from around the globe,

and in the summer of 2015,

we had been working tirelessly
to switch on the LHC

at the highest energy that humans
have ever used in a collider experiment.

Now, higher energy is important

because for particles,
there is an equivalence

between energy and particle mass,

and mass is just a number
put there by nature.

To discover new particles,

we need to reach these bigger numbers.

And to do that, we have to build
a bigger, higher energy collider,

and the biggest, highest
energy collider in the world

is the Large Hadron Collider.

And then, we collide protons
quadrillions of times,

and we collect this data very slowly,
over months and months.

And then new particles might show up
in our data as bumps –

slight deviations from what you expect,

little clusters of data points
that make a smooth line not so smooth.

For example, this bump,

after months of data-taking in 2012,

led to the discovery
of the Higgs particle –

the Higgs boson –

and to a Nobel Prize
for the confirmation of its existence.

This jump up in energy in 2015

represented the best chance
that we as a species had ever had

of discovering new particles –

new answers to these
long-standing questions,

because it was almost
twice as much energy as we used

when we discovered the Higgs boson.

Many of my colleagues had been working
their entire careers for this moment,

and frankly, to little curious me,

this was the moment
I’d been waiting for my entire life.

So 2015 was go time.

So June 2015,

the LHC is switched back on.

My colleagues and I held our breath
and bit our fingernails,

and then finally we saw
the first proton collisions

at this highest energy ever.

Applause, champagne, celebration.

This was a milestone for science,

and we had no idea what we would find
in this brand-new data.

And then a few weeks later,
we found a bump.

It wasn’t a very big bump,

but it was big enough to make
you raise your eyebrow.

But on a scale of one to 10
for eyebrow raises,

if 10 indicates that you’ve
discovered a new particle,

this eyebrow raise is about a four.

(Laughter)

I spent hours, days, weeks
in secret meetings,

arguing with my colleagues
over this little bump,

poking and prodding it with our most
ruthless experimental sticks

to see if it would withstand scrutiny.

But even after months
of working feverishly –

sleeping in our offices
and not going home,

candy bars for dinner,

coffee by the bucketful –

physicists are machines
for turning coffee into diagrams –

(Laughter)

This little bump would not go away.

So after a few months,

we presented our little bump to the world
with a very clear message:

this little bump is interesting
but it’s not definitive,

so let’s keep an eye on it
as we take more data.

So we were trying to be
extremely cool about it.

And the world ran with it anyway.

The news loved it.

People said it reminded
them of the little bump

that was shown on the way
toward the Higgs boson discovery.

Better than that,
my theorist colleagues –

I love my theorist colleagues –

my theorist colleagues wrote
500 papers about this little bump.

(Laughter)

The world of particle physics
had been flipped on its head.

But what was it about this particular bump

that caused thousands of physicists
to collectively lose their cool?

This little bump was unique.

This little bump indicated

that we were seeing an unexpectedly
large number of collisions

whose debris consisted
of only two photons,

two particles of light.

And that’s rare.

Particle collisions are not
like automobile collisions.

They have different rules.

When two particles collide
at almost the speed of light,

the quantum world takes over.

And in the quantum world,

these two particles
can briefly create a new particle

that lives for a tiny fraction of a second

before splitting into other particles
that hit our detector.

Imagine a car collision
where the two cars vanish upon impact,

a bicycle appears in their place –

(Laughter)

And then that bicycle explodes
into two skateboards,

which hit our detector.

(Laughter)

Hopefully, not literally.

They’re very expensive.

Events where only two photons
hit out detector are very rare.

And because of the special
quantum properties of photons,

there’s a very small number
of possible new particles –

these mythical bicycles –

that can give birth to only two photons.

But one of these options is huge,

and it has to do with
that long-standing question

that bothered me as a tiny little kid,

about gravity.

Gravity may seem super strong to you,

but it’s actually crazily weak
compared to the other forces of nature.

I can briefly beat gravity when I jump,

but I can’t pick a proton out of my hand.

The strength of gravity compared
to the other forces of nature?

It’s 10 to the minus 39.

That’s a decimal with 39 zeros after it.

Worse than that,

all of the other known forces of nature
are perfectly described

by this thing we call the Standard Model,

which is our current best description
of nature at its smallest scales,

and quite frankly,

one of the most successful
achievements of humankind –

except for gravity, which is absent
from the Standard Model.

It’s crazy.

It’s almost as though most
of gravity has gone missing.

We feel a little bit of it,

but where’s the rest of it?

No one knows.

But one theoretical explanation
proposes a wild solution.

You and I –

even you in the back –

we live in three dimensions of space.

I hope that’s a
non-controversial statement.

(Laughter)

All of the known particles also live
in three dimensions of space.

In fact, a particle is just another name

for an excitation
in a three-dimensional field;

a localized wobbling in space.

More importantly, all the math
that we use to describe all this stuff

assumes that there are only
three dimensions of space.

But math is math, and we can play
around with our math however we want.

And people have been playing around
with extra dimensions of space

for a very long time,

but it’s always been an abstract
mathematical concept.

I mean, just look around you –
you at the back, look around –

there’s clearly only
three dimensions of space.

But what if that’s not true?

What if the missing gravity is leaking
into an extra-spatial dimension

that’s invisible to you and I?

What if gravity is just as strong
as the other forces

if you were to view it in this
extra-spatial dimension,

and what you and I experience
is a tiny slice of gravity

make it seem very weak?

If this were true,

we would have to expand
our Standard Model of particles

to include an extra particle,
a hyperdimensional particle of gravity,

a special graviton that lives
in extra-spatial dimensions.

I see the looks on your faces.

You should be asking me the question,

“How in the world are we going to test
this crazy, science fiction idea,

stuck as we are in three dimensions?”

The way we always do,

by slamming together two protons –

(Laughter)

Hard enough that
the collision reverberates

into any extra-spatial dimensions
that might be there,

momentarily creating
this hyperdimensional graviton

that then snaps back
into the three dimensions of the LHC

and spits off two photons,

two particles of light.

And this hypothetical,
extra-dimensional graviton

is one of the only possible,
hypothetical new particles

that has the special quantum properties

that could give birth to our little,
two-photon bump.

So, the possibility of explaining
the mysteries of gravity

and of discovering extra
dimensions of space –

perhaps now you get a sense

as to why thousands of physics geeks
collectively lost their cool

over our little, two-photon bump.

A discovery of this type
would rewrite the textbooks.

But remember,

the message from us experimentalists

that actually were doing
this work at the time,

was very clear:

we need more data.

With more data,

the little bump will either turn into
a nice, crisp Nobel Prize –

(Laughter)

Or the extra data will fill in
the space around the bump

and turn it into a nice, smooth line.

So we took more data,

and with five times the data,
several months later,

our little bump

turned into a smooth line.

The news reported on a “huge
disappointment,” on “faded hopes,”

and on particle physicists “being sad.”

Given the tone of the coverage,

you’d think that we had decided
to shut down the LHC and go home.

(Laughter)

But that’s not what we did.

But why not?

I mean, if I didn’t discover
a particle – and I didn’t –

if I didn’t discover a particle,
why am I here talking to you?

Why didn’t I just hang my head in shame

and go home?

Particle physicists are explorers.

And very much of what we do
is cartography.

Let me put it this way: forget
about the LHC for a second.

Imagine you are a space explorer
arriving at a distant planet,

searching for aliens.

What is your first task?

To immediately orbit the planet,
land, take a quick look around

for any big, obvious signs of life,

and report back to home base.

That’s the stage we’re at now.

We took a first look at the LHC

for any new, big,
obvious-to-spot particles,

and we can report that there are none.

We saw a weird-looking alien bump
on a distant mountain,

but once we got closer,
we saw it was a rock.

But then what do we do?
Do we just give up and fly away?

Absolutely not;

we would be terrible scientists if we did.

No, we spend the next couple
of decades exploring,

mapping out the territory,

sifting through the sand
with a fine instrument,

peeking under every stone,

drilling under the surface.

New particles can either
show up immediately

as big, obvious-to-spot bumps,

or they can only reveal themselves
after years of data taking.

Humanity has just begun its exploration
at the LHC at this big high energy,

and we have much searching to do.

But what if, even after 10 or 20 years,
we still find no new particles?

We build a bigger machine.

(Laughter)

We search at higher energies.

We search at higher energies.

Planning is already underway
for a 100-kilometer tunnel

that will collide particles
at 10 times the energy of the LHC.

We don’t decide where
nature places new particles.

We only decide to keep exploring.

But what if, even after
a 100-kilometer tunnel

or a 500-kilometer tunnel

or a 10,000-kilometer
collider floating in space

between the Earth and the Moon,

we still find no new particles?

Then perhaps we’re doing
particle physics wrong.

(Laughter)

Perhaps we need to rethink things.

Maybe we need more resources,
technology, expertise

than what we currently have.

We already use artificial intelligence
and machine learning techniques

in parts of the LHC,

but imagine designing
a particle physics experiment

using such sophisticated algorithms

that it could teach itself to discover
a hyperdimensional graviton.

But what if?

What if the ultimate question:

What if even artificial intelligence
can’t help us answer our questions?

What if these open questions,
for centuries,

are destined to be unanswered
for the foreseeable future?

What if the stuff that’s bothered me
since I was a little kid

is destined to be unanswered
in my lifetime?

Then that …

will be even more fascinating.

We will be forced to think
in completely new ways.

We’ll have to go back to our assumptions,

and determine if there was
a flaw somewhere.

And we’ll need to encourage more people
to join us in studying science

since we need fresh eyes
on these century-old problems.

I don’t have the answers,
and I’m still searching for them.

But someone – maybe
she’s in school right now,

maybe she’s not even born yet –

could eventually guide us to see physics
in a completely new way,

and to point out that perhaps
we’re just asking the wrong questions.

Which would not be the end of physics,

but a novel beginning.

Thank you.

(Applause)

译者:Leslie Gauthier
审稿人:Camille Martínez 从

我还是个小孩的时候起,物理学

就一直困扰着我

这与

科学家们问
了近 100 年但

没有答案的问题有关。

自然界中最小的事物

,即量子世界的粒子,如何

与自然界中最大的
事物——

行星、恒星和星系——
通过重力结合在一起?

小时候,我会为这样的问题感到困惑

我会
摆弄显微镜和电磁铁

,我会阅读
关于小力

和量子力学的文章

,我会惊叹于
这种描述

与我们的观察结果的匹配程度。

然后我会看星星

,我会读到
我们对引力的理解程度

,我肯定会认为,
这两个系统必须有某种优雅的方式

匹配。

但是没有。

书上会说,

是的,我们
对这两个领域分别了解很多,

但是当我们试图在
数学上将它们联系起来时,

一切都崩溃了。

100 年来,

我们关于如何解决
这个基本上是物理灾难的想法

都没有得到证据的支持。

而对于年迈的我——

小小的、好奇的、怀疑的詹姆斯——

这是一个极其不满意的答案。

所以,我仍然是一个怀疑的小孩。

现在快进
到 2015 年 12 月,

当时我发现自己正置身于

物理世界的中心,
被颠倒过来。

这一切都始于我们在 CERN
在我们的数据中看到一些有趣的东西:

新粒子

的暗示,对这个问题的可能非凡答案的暗示

所以我仍然是一个持怀疑态度的
小孩,我想,

但我现在也是一个粒子猎人。

我是欧洲核子研究中心
大型强子对撞机的物理学家

,这是有史以来最大的科学
实验。

这是一条27公里长的隧道
,位于法国和瑞士边境,

埋在地下100米。

在这个隧道中,

我们使用
比外层空间更冷的超导磁体

将质子加速
到几乎光速,


以每秒数百万次的速度将它们相互

撞击,收集这些碰撞的碎片

以寻找新的、未被发现的
基本粒子。

它的设计和建造
花费了全球数千名物理学家数十年的工作

,在 2015 年夏天,

我们一直在不知疲倦地工作,

人类
在对撞机实验中使用过的最高能量开启 LHC。

现在,更高的能量很重要,

因为对于粒子来说,

能量和粒子质量之间存在等价关系,

而质量只是自然赋予的一个数字

为了发现新粒子,

我们需要达到这些更大的数字。

为此,我们必须建造
一个更大、更高能量的对撞机,

而世界上最大、最高
能量的对撞机

就是大型强子对撞机。

然后,我们碰撞质子数
万亿次

,我们非常缓慢地收集这些数据,
历时数月。

然后新的粒子可能会
在我们的数据中以凸起的形式出现——

与您预期的略有偏差,

小的数据点集群
会使平滑线变得不那么平滑。

例如,

在 2012 年经过数月的数据采集后,这一碰撞

导致
了希格斯粒子

——希格斯玻色子的发现,


因确认其存在而获得了诺贝尔奖。

2015 年的能量跃升

代表了
我们作为一个物种

发现新粒子的最佳机会——

这些
长期存在的问题的新答案,

因为它几乎

我们发现希格斯粒子时所用能量的两倍 玻色子。

我的许多同事都在
为这一刻工作

,坦率地说,对于我的好奇心,

这是
我一生都在等待的时刻。

所以2015年是时候了。

所以 2015 年 6 月,

大型强子对撞机重新启动。

我和我的同事屏住呼吸
,咬着指甲

,最后我们看到
了有史以来最高能量的第一次质子

碰撞。

掌声,香槟,庆祝。

这是科学的里程碑

,我们不知道我们会
在这些全新的数据中找到什么。

然后几周后,
我们发现了一个肿块。

这不是一个很大的肿块,

但足以让
你扬起眉毛。

但是在眉毛上扬的 1 到 10 的等级上

如果 10 表示你
发现了一个新粒子,那么

这个眉毛上扬大约是 4。

(笑声)

我花了几个小时、几天、几周
的秘密会议,

与我的同事
争论这个小

疙瘩,用我们最
无情的实验

棒戳它,看看它是否能经得起审查。

但即使经过几个月
的狂热工作——

睡在我们的办公室
,不回家,

吃糖果,

一桶一桶的咖啡——

物理学家是
把咖啡变成图表的机器——

(笑声)

这个小疙瘩不会消失。

所以几个月后,

我们向世界展示了我们的小颠簸,向世界
传达了一个非常明确的信息:

这个小颠簸很有趣,
但它不是确定性的,

所以让
我们在获取更多数据时密切关注它。

所以我们试图对此表现得
非常冷静。

无论如何,世界都在运行。

新闻很喜欢它。

人们说这让
他们想起了在

发现希格斯玻色子的路上所出现的小颠簸。

比这更好的是,
我的理论家同事——

我爱我的理论家同事——

我的理论家同事写了
500 篇关于这个小凸起的论文。

(笑声)

粒子物理学的世界
被颠覆了。

但究竟是什么

让成千上万的
物理学家集体失去了冷静呢?

这个小疙瘩很独特。

这个小凸起

表明我们看到了出乎意料的
大量碰撞,

其碎片
仅由两个光子、

两个光粒子组成。

这很罕见。

粒子碰撞
与汽车碰撞不同。

他们有不同的规则。

当两个粒子
几乎以光速碰撞时

,量子世界就接管了。

在量子世界中,

这两个粒子
可以短暂地创造一个新粒子

,该粒子

在分裂成其他
粒子撞击我们的探测器之前可以存活不到一秒。

想象一下汽车碰撞
,两辆车在撞击后消失,

一辆自行车出现在他们的位置——

(笑声

) 然后那辆自行车爆炸
成两个滑板

,撞到了我们的探测器。

(笑声)

希望不是字面意思。

它们非常昂贵。

只有两个光子
击中探测器的事件非常罕见。

而且由于光子的特殊
量子特性,

只有极
少数可能的新粒子——

这些神话般的自行车

——只能产生两个光子。

但是其中一个选择是巨大的

,它与
那个长期

困扰我的问题有关,这个问题是

关于重力的。

重力对你来说可能看起来超级强大,


与其他自然力量相比,它实际上非常弱。

当我跳跃时,我可以短暂地克服重力,

但我无法从我的手中捡起一个质子。

与其他自然力相比,重力的强度

它是 10 到负 39。

这是一个小数,后面有 39 个零。

更糟糕的是,

所有其他已知的自然力量

被我们称为标准模型的东西完美地描述了,

这是我们目前
在最小尺度上对自然的最佳描述

,坦率地说,

这是人类最成功的
成就之一—— - 标准模型

中不存在重力除外

这很疯狂。

就好像
大部分重力都消失了一样。

我们感觉到了一点,

但其余的在哪里?

没人知道。

但是一种理论解释
提出了一个疯狂的解决方案。

你和我——

甚至你在后面——

我们生活在空间的三个维度中。

我希望这是一个
没有争议的声明。

(笑声)

所有已知的粒子也生活
在空间的三个维度中。

事实上,粒子只是

三维场中激发的别称。

空间的局部摇摆。

更重要的是
,我们用来描述所有这些东西的所有数学都假设

空间只有三个维度。

但是数学就是数学,我们可以
随心所欲地玩弄我们的数学。

很长一段时间以来,人们一直在
玩弄额外维度的空间

但它一直是一个抽象的
数学概念。

我的意思是,看看你周围——
你在后面,看看周围

——显然只有
三个维度的空间。

但如果这不是真的呢?

如果丢失的重力泄漏

到你我都看不到的超空间维度怎么办?

如果你在这个
超空间维度上观察重力和其他力一样强,

而你和我所体验到的
只是一小部分重力

让它看起来很弱,那会怎样?

如果这是真的,

我们将不得不扩展
我们的粒子标准模型,

以包括一个额外的粒子,
一个超维的引力粒子,

一种生活
在超空间维度中的特殊引力子。

我看到你脸上的表情。

你应该问我一个问题,

“我们将如何测试
这个疯狂的科幻想法,

因为我们被困在三个维度中?”

我们总是这样做,

通过将两个质子撞击在一起——

(笑声)

碰撞的强度足以
让碰撞回荡

到可能存在的任何超空间维度

瞬间产生
这种超维度引力子

,然后迅速回到
大型强子对撞机的三个维度,

然后 吐出两个光子,

两个光粒子。

这种假设的
超维引力子

是唯一可能的
假设新粒子之一

,它具有特殊的量子特性

,可以产生我们的小
双光子凸点。

所以,解释
引力的奥秘

和发现额外
空间维度的可能性——

也许现在你

明白为什么成千上万的物理学极客
集体

对我们的小双光子碰撞失去了冷静。

这种类型的发现
将改写教科书。

但请记住

,我们

当时实际从事
这项工作的实验者传达的信息

非常明确:

我们需要更多数据。

有了更多的数据

,小凸起要么
变成漂亮、清晰的诺贝尔奖——

(笑声)

或者额外的数据将填充
凸起周围的空间

,把它变成一条漂亮、平滑的线。

所以我们拿了更多的数据

,有了五倍的数据,
几个月后,

我们的小凹凸

变成了一条平滑的线。

新闻报道了“巨大的
失望”、“希望破灭”

以及粒子物理学家“悲伤”。

鉴于报道的语气,

你会认为我们已经
决定关闭大型强子对撞机并回家。

(笑声)

但那不是我们所做的。

但为什么不呢?

我的意思是,如果我没有发现
一个粒子——而且我没有——

如果我没有发现一个粒子,
我为什么要在这里和你说话?

为什么我不羞愧地低下头

回家呢?

粒子物理学家是探索者。

我们所做的大部分工作
都是制图。

让我这样说吧:暂时
忘记 LHC。

想象一下,你是一名太空探险家,
到达一个遥远的星球,

寻找外星人。

你的第一个任务是什么?

立即绕地球运行,
着陆,快速环顾四周,

寻找任何明显的大生命迹象,

然后返回基地报告。

这就是我们现在所处的阶段。

我们首先查看了 LHC

中是否有任何新的、大的、
明显

可见的粒子,我们可以报告说没有。

我们在远处的山上看到了一个看起来很奇怪的外星人凸起

但一旦我们靠近,
我们看到它是一块岩石。

但那我们该怎么办?
我们只是放弃并飞走吗?

绝对不;

如果我们这样做了,我们将成为可怕的科学家。

不,我们在接下来
的几十年里探索,

绘制领土,

用精细的仪器筛选沙子,

窥视每一块石头,

在地表下钻探。

新粒子要么
会立即显示

为大而明显的凸起,

要么只能
在多年的数据采集后才能显现出来。

人类刚刚开始
在 LHC 上进行如此高能量的探索

,我们还有很多探索工作要做。

但是,即使在 10 或 20 年后,
我们仍然没有发现新粒子怎么办?

我们制造了一台更大的机器。

(笑声)

我们追求更高的能量。

我们寻找更高的能量。

一个 100 公里长的隧道的规划已经在进行中,该

隧道将以
LHC 能量的 10 倍碰撞粒子。

我们不决定
大自然将新粒子放置在哪里。

我们只决定继续探索。

但是,如果在地球和月球之间的太空中漂浮
了 100 公里的隧道

或 500 公里的隧道

或 10,000 公里的
对撞机

我们仍然没有发现新粒子怎么办?

那么也许我们做错了
粒子物理学。

(笑声)

也许我们需要重新思考问题。

也许我们需要比我们目前拥有的更多的资源、
技术和专业知识

我们已经

在 LHC 的某些部分中使用了人工智能和机器学习技术,

但想象一下使用如此复杂的算法设计
一个粒子物理实验

,它可以
自学发现超维引力子。

但万一呢?

如果最终的问题

是什么:如果连人工智能
都无法帮助我们回答我们的问题怎么办?

如果
几个世纪以来

这些悬而未决
的问题在可预见的未来注定无法回答怎么办?

如果从小就困扰
我的事情注定

在我有生之年没有答案怎么办?

那么那个……

会更加迷人。

我们将被迫
以全新的方式思考。

我们将不得不回到我们的假设,

并确定
某处是否存在缺陷。

我们需要鼓励更多的人
加入我们研究科学,

因为我们需要
对这些百年问题有新的认识。

我没有答案
,我仍在寻找它们。

但是有人——也许
她现在在学校,

也许她还没有出生——

最终可以引导我们
以全新的方式看待物理学,

并指出也许
我们只是在问错误的问题。

这不会是物理学的终结,

而是一个新奇的开始。

谢谢你。

(掌声)