Its complicated. History of ammonia the human race

Transcriber: Khoa Vo
Reviewer: David DeRuwe

So today I’m going to talk about ammonia.

It’s a rather smelly but invisible gas
that consists of a nitrogen atom

bonded to three hydrogen
atoms in a pyramidal structure.

This gas underpins a large amount

of the things we take
for granted in modern life,

from farming to fashion.

But our relationship with it began
thousands of years in the past

with a civilization
that was more concerned

with great pyramids
than microscopic ones -

the ancient Egyptians.

In the Siwa oasis in modern-day Libya,

Pliny the Elder tells
of the temple of Zeus Ammon

where the priests there
used ammonium chloride,

a salt containing ammonia and chlorine

for their medicinal and religious
practices on the site.

And in Rome, the togas that we associate
as being so white and clean

used [ammonia derived from urine]
to clean and bleach those garments.

This became such a widespread
practice in the city

that in 79 CE, Emperor Vespasian
declared “Urinae Vectigal,”

or a urine tax to deal with this issue
and turn the smelly collection of urine

in the city into a monetary
gain for the empire.

By the 10th century CE,

ammonium chloride was being traded
from the Far East to Europe

along the Silk Road,
along with the commodities

like spices and silk
we associate with that path today.

These natural sources of ammonia
were very useful to our ancestors,

but it’s not how we produce
ammonia in modern life.

That process began in 1904
with Fritz Haber developing

a chemical synthesis to make ammonia
from nitrogen from the air and hydrogen,

along with a fellow
German compatriot, Carl Bosch.

In 1914, they commissioned
the first Haber-Bosch processing plant

to produce ammonia for the war effort
for Germany in World War One.

This was necessary because the British
had blockaded the ports

that the German empire used
to import guano,

a natural source of ammonia
from South America.

And while this was quite a controversial
start for synthetic ammonia production,

it revolutionized farming and textiles
in the 20th century.

This was because of the excess nitrogen
available from the synthetic ammonia.

It was used to create the fertilizers
that we use in modern farming,

which increase the yields
of crops around the world.

This resulted in millions of people being
lifted out of food poverty and insecurity.

And further to this,

the availability of this cheap ammonia

resulted in the creation
of synthetic fibers such as nylon

that we’re all familiar with today.

By the 1930s, ammonia had become
such a useful chemical to us as a species

that we were using it
in refrigeration practices,

and what this meant was we were able
to increase the shelf life

of foods and medicines around the world,

which meant that they were more able
to get to the people that need them.

This is where my personal journey
with ammonia began,

researching sustainable and alternative
refrigeration methods at Queen’s.

Ammonia has been used for a long time,
and we are coming back

to considering using it as an alternative
to the modern HFCs and CFCs

we use in our air conditioners
and freezers today.

But ammonia is used
for much more than that.

We use it to make our food;
we use it to make our clothes as well.

And this has created a network

that produces 176 million tons
of ammonia every year.

That number is a little bit obscure,
so to put that into perspective,

the only things we make more of every year
on the planet are cement and steel.

Along with the other large
chemicals that we produce,

there’s an associated environmental
impact from this process:

The energy and the electricity we use

and the feedstock
that we get our hydrogen from

all derive from fossil fuels,
mostly coal and natural gas,

and these have an associated
carbon emission

that equates to 300 million extra tons
of CO2 entering our atmosphere every year.

That’s about equivalent
to the entire global shipping sector

that moves all the goods we use
as a species around the planet every year,

not a huge amount,

But ammonia presents a unique opportunity

in this group of massive
chemicals that we produce,

in that it contains no carbon -
it only contains nitrogen and hydrogen.

So the carbon that we use
is further up in the process,

and if we can remove that by decarbonising
the electricity production;

by using solar, wind, geothermal
or tidal energy to supply it;

and we create the hydrogen
we use to make it

using technology such as fuel cells
to split water into hydrogen and oxygen,

we can secure and make
a more sustainable future

for food production
and textile production in modern life.

This opportunity is something
that we need to grasp,

as ammonia is one of the only chemicals
we produce at this scale

that doesn’t contain carbon,

and what it will do
is it will allow us to enter

the next revolution that this very smelly
friend of ours can present to us:

the energy revolution.

One of the main problems
we are having right now

with transitioning from carbon-based
energy production to hydrogen-based

is hydrogen is very volatile
and very dangerous when stored or handled.

It also has the issue that we don’t have
the infrastructure or the network we need

to produce it up in the amounts
that we need to create the energy

that we all use every day.

But ammonia presents an opportunity
to sidestep those issues.

We already transport it
in vast quantities around the world,

and over the last century,
we’ve developed a network

of production and handling
that’s only rivaled by natural gas.

If we use ammonia
and its three hydrogen atoms

as a hydrogen vector
to transport hydrogen around the planet,

we can overcome these hurdles

and more quickly decarbonise
our energy production as a species.

So despite being a very old
and very smelly friend,

ammonia is constantly updating
its relationship status with us

to a more sustainable future
that we can all enjoy.

Thank you.

抄写员:Khoa Vo
审稿人:David DeRuwe

所以今天我要谈谈氨。

这是一种相当臭但不可见的气体
,由一个氮

原子与三个氢
原子以金字塔结构键合而成。

这种气体支撑着

我们
在现代生活中认为理所当然的大量事物,

从农业到时尚。

但我们与它的关系
始于数千年前

的文明——古埃及人
,它更

关心大金字塔而
不是微观金字塔

在现代利比亚的锡瓦绿洲,

老普林尼讲述
了宙斯阿蒙神庙,

那里的牧师
使用氯化铵,

一种含有氨和氯的盐,

用于他们在该地点的医疗和宗教
活动。

在罗马,我们联想
到如此洁白干净的长袍

使用[从尿液中提取的氨]
来清洁和漂白这些衣服。


在这座城市变得如此普遍,

以至于在公元 79 年,
韦斯帕芗皇帝宣布“

尿尿税”或尿税来处理这个问题
,并将城市中的臭尿收集

变成帝国的货币
收益。

到公元 10 世纪,

氯化铵沿着丝绸之路
从远东贸易到欧洲


以及

我们今天与这条道路相关的香料和丝绸等商品。

这些氨的天然来源
对我们的祖先非常有用,

但这不是我们
在现代生活中生产氨的方式。

这个过程始于 1904
年,弗里茨·哈伯与德国同胞卡尔·博世一起开发

了一种化学合成方法,可以
从空气中的氮气和氢气中制造氨

1914 年,他们
委托第一家 Haber-Bosch 加工厂

为第一次世界大战中的德国生产氨。

这是必要的,因为
英国封锁

了德意志帝国
用来进口鸟粪的港口,鸟粪

是来自南美洲的氨的天然来源

虽然这对于合成氨的生产来说是一个颇具争议的
开端,

但它在 20 世纪彻底改变了农业和纺织业

这是因为
从合成氨中可获得过量的氮。

它被用来制造
我们在现代农业中使用的肥料,

从而提高
了世界各地农作物的产量。

这导致数百万人
摆脱了粮食贫困和不安全状况。

此外

,这种廉价氨的可用性

导致了合成纤维的产生
,例如

我们今天都熟悉的尼龙。

到 1930 年代,氨已经
成为一种对我们非常有用的化学物质

,我们
在制冷实践中使用它

,这意味着我们
能够延长

世界各地食品和药品的保质期,

这意味着它们 更
能够接触到需要他们的人。

这是我个人氨之旅
的开始,在皇后大学

研究可持续和替代
制冷方法。

氨已经使用了很长时间
,我们正在

重新考虑使用它作为

我们今天在空调
和冰柜中使用的现代 HFC 和 CFC 的替代品。

但氨的
用途远不止于此。

我们用它来做我们的食物;
我们也用它来制作我们的衣服。

这创造了一个

每年生产 1.76
亿吨氨的网络。

这个数字有点模糊,
所以从这个角度来看,

我们每年在地球上制造更多的东西
就是水泥和钢铁。

除了我们生产的其他大型
化学品之外,这个过程

还会对环境产生相关
影响:

我们使用的能源和电力

以及
我们从中获得氢气的原料

都来自化石燃料,
主要是煤炭和天然气,

而这些都有 相关的
碳排放

量相当于每年额外增加 3
亿吨二氧化碳进入我们的大气层。

这大约
相当于整个全球航运部门

每年将我们作为一个物种使用的所有货物运送
到地球上,数量

不多,

但是氨

在我们生产的这组大量
化学品中提供了一个独特的机会

,因为它包含 没有碳——
它只含有氮和氢。

所以我们使用的碳
在这个过程中会进一步增加

,如果我们可以通过使电力生产脱碳来去除它

通过使用太阳能、风能、地热能
或潮汐能来提供能源;

我们利用

燃料电池等技术
将水分解为氢和氧来制造我们使用的氢,

我们可以确保

现代生活中的食品生产和纺织品生产的未来更加可持续。

这个机会
是我们需要抓住的,

因为氨是
我们以这种规模生产的

唯一不含碳的化学品之一

,它的作用
是让我们

进入下一个革命,这个非常臭的
朋友 我们可以向我们展示

:能源革命。

我们

现在从碳基
能源生产过渡到氢基能源的主要问题之一

是氢
在储存或处理时非常易挥发并且非常危险。

它还存在一个问题,即我们
没有基础设施或网络

来生产我们每天都在
使用的能源

所需的数量。

但氨提供
了回避这些问题的机会。

我们已经
在世界各地大量运输它

,在上个世纪,
我们开发了一个

只有天然气才能与之匹敌的生产和处理网络。

如果我们使用氨
和它的三个氢原子

作为氢载体
在地球周围运输氢,

我们可以克服这些障碍,

并更快地使
我们作为一个物种的能源生产脱碳。

因此,尽管氨是一个非常老
和非常臭的朋友,但

氨正在不断更新
它与我们的关系状态,

以实现我们都可以享受的更可持续的未来

谢谢你。