The highstakes race to make quantum computers work Chiara Decaroli

The contents of this metal cylinder could
either revolutionize technology

or be completely useless—

it all depends on whether we can harness
the strange physics of matter

at very, very small scales.

To have even a chance of doing so,

we have to control the environment
precisely:

the thick tabletop and legs guard against
vibrations from footsteps,

nearby elevators, and opening
or closing doors.

The cylinder is a vacuum chamber,

devoid of all the gases in air.

Inside the vacuum chamber is a smaller,

extremely cold compartment,
reachable by tiny laser beams.

Inside are ultra-sensitive particles
that make up a quantum computer.

So what makes these particles
worth the effort?

In theory, quantum computers could
outstrip the computational limits

of classical computers.

Classical computers process
data in the form of bits.

Each bit can switch between two states
labeled zero and one.

A quantum computer uses something
called a qubit,

which can switch between zero, one,
and what’s called a superposition.

While the qubit is in its superposition,

it has a lot more information
than one or zero.

You can think of these positions as
points on a sphere:

the north and south poles of the sphere
represent one and zero.

A bit can only switch between
these two poles,

but when a qubit is in its superposition,

it can be at any point on the sphere.

We can’t locate it exactly—

the moment we read it, the qubit resolves
into a zero or a one.

But even though we can’t observe the
qubit in its superposition,

we can manipulate it to perform
particular operations while in this state.

So as a problem grows more complicated,

a classical computer needs correspondingly
more bits to solve it,

while a quantum computer will
theoretically be able to handle

more and more complicated problems

without requiring as many more qubits as a
classical computer would need bits.

The unique properties of quantum computers

result from the behavior of atomic
and subatomic particles.

These particles have quantum states,

which correspond to the
state of the qubit.

Quantum states are incredibly fragile,

easily destroyed by temperature
and pressure fluctuations,

stray electromagnetic fields,

and collisions with nearby particles.

That’s why quantum computers need
such an elaborate set up.

It’s also why, for now,

the power of quantum computers
remains largely theoretical.

So far, we can only control a few qubits
in the same place at the same time.

There are two key components involved

in managing these fickle quantum
states effectively:

the types of particles a quantum
computer uses,

and how it manipulates those particles.

For now, there are two leading approaches:

trapped ions and superconducting qubits.

A trapped ion quantum computer uses
ions as its particles

and manipulates them with lasers.

The ions are housed in a trap made
of electrical fields.

Inputs from the lasers tell the ions what
operation to make

by causing the qubit state
to rotate on the sphere.

To use a simplified example,

the lasers could input the question:

what are the prime factors of 15?

In response, the ions may release photons—

the state of the qubit determines whether
the ion emits photons

and how many photons it emits.

An imaging system collects these photons
and processes them to reveal the answer:

3 and 5.

Superconducting qubit quantum computers
do the same thing in a different way:

using a chip with electrical circuits
instead of an ion trap.

The states of each electrical circuit
translate to the state of the qubit.

They can be manipulated with electrical
inputs in the form of microwaves.

So: the qubits come from either ions
or electrical circuits,

acted on by either lasers or microwaves.

Each approach has advantages
and disadvantages.

Ions can be manipulated very precisely,

and they last a long time,

but as more ions are added to a trap,

it becomes increasingly difficult to
control each with precision.

We can’t currently contain enough ions
in a trap to make advanced computations,

but one possible solution might be to
connect many smaller traps

that communicate with each
other via photons

rather than trying to create one big trap.

Superconducting circuits, meanwhile, make
operations much faster than trapped ions,

and it’s easier to scale up the number
of circuits in a computer

than the number of ions.

But the circuits are also more fragile,

and have a shorter overall lifespan.

And as quantum computers advance,

they will still be subject to the
environmental constraints

needed to preserve quantum states.

But in spite of all these obstacles,

we’ve already succeeded at making
computations

in a realm we can’t enter or even observe.

这个金属圆柱体的内容可能
会彻底改变技术,

也可能完全无用——

这完全取决于我们能否

在非常非常小的尺度上驾驭物质的奇怪物理特性。

为了有机会这样做,

我们必须精确控制环境

:厚实的桌面和腿可以
防止脚步声、

附近的电梯以及打开
或关闭门的振动。

气缸是一个真空室,

没有空气中的所有气体。

真空室内部是一个较小的、

极冷的隔间,
可以通过微小的激光束到达。

内部
是构成量子计算机的超敏感粒子。

那么是什么让这些粒子
值得努力呢?

理论上,量子计算机可以
超越

经典计算机的计算极限。

经典计算机
以比特的形式处理数据。

每个位都可以在
标记为 0 和 1 的两种状态之间切换。

量子计算机使用一种
叫做量子比特的东西,

它可以在零、一
和所谓的叠加之间切换。

当量子比特处于叠加状态时,

它的信息
比一或零多得多。

您可以将这些位置视为
球体上的点:

球体的北极和南极分别
代表 1 和 0。

一个比特只能在
这两个极点之间切换,

但当一个量子比特处于叠加状态时,

它可以在球体上的任何一点。

我们无法准确定位它——

在我们读取它的那一刻,量子位解析
为 0 或 1。

但是即使我们无法观察到
量子比特的叠加态,

我们也可以操纵它
在这种状态下执行特定的操作。

因此,随着问题变得越来越复杂

,经典计算机需要相应
更多的比特来解决它,

而量子计算机
理论上将能够处理

越来越复杂的问题,

而无需像
经典计算机需要的比特那样多的量子比特。

量子计算机的独特

特性源于原子
和亚原子粒子的行为。

这些粒子具有量子态

,对应于
量子比特的状态。

量子态非常脆弱,

很容易被温度
和压力波动、

杂散电磁场

以及与附近粒子的碰撞破坏。

这就是为什么量子计算机需要
如此精心设置的原因。

这也是为什么,目前,

量子计算机的力量在
很大程度上仍然是理论上的。

到目前为止,我们只能同时控制同一个地方的几个量子比特

有效

管理这些变化无常的量子态涉及两个关键组成部分

:量子计算机使用的粒子类型

以及它如何操纵这些粒子。

目前,有两种主要方法:

捕获离子和超导量子比特。

捕获离子量子计算机使用
离子作为其粒子

,并用激光对其进行操作。

离子被安置在由电场制成的陷阱
中。

来自激光器的输入

通过使量子位状态
在球体上旋转来告诉离子进行什么操作。

举个简单的例子

,激光器可以输入一个问题:

15 的主要因数是什么?

作为响应,离子可能会释放光子——

量子比特的状态决定
了离子是否发射光子

以及它发射了多少光子。

成像系统收集这些光子
并对其进行处理以揭示答案:

3 和 5。

超导量子比特量子计算机
以不同的方式做同样的事情:

使用带有电路的芯片
而不是离子阱。

每个电路
的状态转换为量子位的状态。

它们可以通过
微波形式的电输入进行操作。

所以:量子比特来自离子
或电路,

由激光或微波作用。

每种方法都有优点
和缺点。

离子可以被非常精确地操纵,

并且它们持续很长时间,

但是随着更多离子被添加到阱中,精确控制每个离子

变得越来越困难

我们目前无法在陷阱中包含足够的离子
来进行高级计算,

但一种可能的解决方案可能是
连接许多通过光子

相互通信的较小陷阱,

而不是试图创建一个大陷阱。

与此同时,超导电路使
操作比捕获的离子快得多,并且比离子

数量更容易扩大
计算机中的电路

数量。

但电路也更脆弱

,整体寿命更短。

随着量子计算机的进步,

它们仍将

受到保持量子态所需的环境限制。

但尽管存在所有这些障碍,

我们已经成功地

在一个我们无法进入甚至观察不到的领域进行了计算。