Are We Ready for Quantum Computing

[Music]

in 1988

when i’d studied computer science

electronics engineering

applied physics i’d done some research

on information theory

and i’d spent three years working on

designing electronics electronic systems

to prevent

lighting systems

industrial lighting systems from blowing

up

in the trade this is known as a a

non-passive

failure and at the time i was in the uk

working in research

working on these electronic systems and

i can remember at the time

hearing about the very first quantum

bits qubits

1988 now among the engineering and

scientific community

this was a client a little bit of a

sensation

but everywhere else it didn’t really uh

didn’t really

raise any eyebrows people didn’t really

notice it

but back then i thought oh this is this

could be interesting

something interesting could come out of

this

a year later i moved to germany

having fixed the problem with the

exploding light bulbs

and i became a midwife to the world wide

web

and back then this clunky

buggy document hypertext system

the very first of its kind scalable

hypertext system

we were working on this and i remember

thinking

and my colleagues as well this is

probably going to change

a lot this is probably going to be a

fundamentally new kind of technology

we didn’t realize it would be things

like cat videos and

fake news and cyber wars

and world of warcraft but

we did think it something momentous

would have would happen

i think if at the time if you’d asked

anybody generally about

the impact of the web people will just

have said

it’s a neat way to write documents

that’s all

but what the world wide web did for us

was give us a new way

to present information and a new way

to interact with each other

this interaction and information

presentation

was fundamental paradigm shift something

fundamentally new

it allowed a new level of

interaction between people

and at the time the

implications of that as i said were not

clear it’s

perhaps a coincidence that at the same

time of course

we had this beginnings of

quantum computing the first qubits

but if you want to

understand a little bit about quantum

computing we need a metaphor

we need some kind of stabilizer wheels

of kids when they learn to ride a

bicycle

they have stabilizer wheels we need

stabilizer wheels

and our stabilizer wheels today

are going to be coins and balls

so if you throw a coin

a thousand times then give or take

a standard deviation you’ll get 500

heads

and 500 tails incidentally the standard

deviation

the actual number of coins you see when

you toss a thousand coins

uh bears a very very deep mathematical

relationship

to the distribution of prime numbers

it’s not relevant here but it’s an

interesting fact

if you have two coins then

when you throw them both then

some of the time you’ll get in heads

plus heads head

plus tail tail plus heads tails plus

tails

and each of those variants will also

they will occur 250 times

plus or minus a standard deviation and

with three coins

eight different variations each one

occurring

125 times

for quantum computing we need a

different module

model this is where the ball comes in

now if we take this ball here and we

define a some arbitrary point on its

surface

say here

if we spin the ball and then stop it

then that point on the surface

is just as likely to point in one

direction as in any other direction

and we can describe that with two angles

an angle we call the azimuth

which is this way and an angle we call

the elevation

this way strictly speaking we also need

to know the size of the ball

but physicists are very clever about

cheating so normally in physics we

define the radius of the ball to be one

that makes the mathematics

very easy and some of the calculations

very simple

this is our simple model of a qubit

quantum bit

like a ball a qubit has a specific state

a specific

direction when we look at it

the interesting thing happens

when we put the ball on the cubit

behind a screen or inside a bag

just imagine that you can’t look inside

this bag it’s transparent for a reason

so you can see what’s happening so just

imagine that

we’ve got a spinning ball in here

something’s happening to it

with a quantum bit with a qubit

that ball can be in many possible

states have many possible positions at

the same time

we call this superposition also we can

link two

balls together so that the position the

direction of one of them completely

determines

the position and direction of the other

one and vice versa

you can even put three of them in there

or as many as you want

we call that entanglement

and entanglement and superposition are

the fundamental principles

of quantum mechanics the question then

becomes how can we use that

we need to convert these qubits

into bits the simplest example is if you

imagine a qubit

and you imagine that it’s you’ve done

something to it and it’s now

pointing at the equator

if we repeat that experiment like the

coin a thousand times

then 500 times we will measure it as

pointing upwards and 500 times

downwards so it’s just like a coin

the interesting part happens of course

when we’ve prepared the qubit in the

right way

when we’ve entangled the qubits in the

right way

then that’s no longer the case

then each qubit will favor a one or a

zero more

than just with a coin we found a way to

get

inside or behind the pure probability of

the coin

by using quantum mechanics the

trick with quantum computing is to

construct these interactions between the

balls between the qubits

in such a way that the right answers the

answer you’re looking for

occurs more often and the answers you’re

not looking for

occur less often we call this

constructive and destructive

interference and this is the principle

behind every quantum program in order

to understand how that actually works we

need to look a little bit at the

history how quantum computers actually

came into being in 1973

a man called charles bennett this is an

extract from his

scientific paper um

don’t worry you’re not supposed to

understand it he showed

that any computer program

can be reconstructed so it’s reversible

and that’s important because that means

that you can execute the computer

program

get it to produce a result and then run

it backwards

so that you’re in the initial state you

were when you started

this is important because it allows us

to now construct programs with quantum

mechanical systems

in other words we can run a quantum

program to produce a result

without actually changing anything this

is a major step

a few years later in 1988

when i was when i was fighting my

exploding light bulbs

the very first qubits were invented

and a few years later a physicist

called richard feyman came up with a

proof

that you could actually use these kinds

of programs to solve

problems a particular problem which was

infeasible to solve on a classical

computer

it was so complex and so difficult the

classical computer would never be able

to solve it

but a quantum computer was trivial

that changed again in 1994

when peter shaw developed an algorithm

for factoring numbers

factoring numbers is a difficult problem

we know that 5 times 3 is 15.

5 and 3 are the factors of 15. if we

want to factor a thousand bit number

and even with the biggest supercomputer

we have today this would take millions

or billions of years peter shaw’s

algorithm sped that up

and if we had a perfect quantum computer

it would mean we could factor such

numbers in weeks or days or maybe even

hours or minutes that was the

really the birth and the impetus that

quantum computing

needed

quantum computers are very beautiful

this is the inside of one

i i like to think that the reason they

are beautiful is because form follows

function

and quantum computing the function of

quantum computing is as fundamental as

it gets

we’re now at the stage where we have

quantum computers we’re able to use them

we’re able to program them we’re

searching for

better industrializable more robust more

stable

technologies we’re learning how to write

algorithms for them

we’re working on different types of

quantum computing different types of

qubit

different types of chips for doing this

so we’re now out of the stage of what we

call quantum the quantum physical era

we’re now in the stage of the era of

quantum readiness

and i see this when i look at the number

of students attending

university courses on quantum computing

or the number of attendees on

online summer schools and classes the

numbers

are astounding we are now at the stage

where

we’re getting ready to go into the phase

of quantum advantage and quantum

advantage means

the point where quantum computers

overtake classical computers

become so performant that they are

solving problems

way beyond what we will ever be able to

do

on current computers

we have quantum computers the technology

is starting to mature

and the question is are we ready for

quantum computers

i think we are i’d like to encourage you

to

everybody out there everybody here

you have access to completely free

quantum computers

you can try it out it’s very simple

give it a go i think we’re ready for

quantum computers computers

i’d like to invite you to join me on the

journey

to try this out and learn this

technology anybody want some qubits

thank you

[音乐

] 1988

年我学习计算机科学

电子工程

应用物理时,我做了一些

信息论研究

,我花了三年时间

设计电子电子系统,

以防止

照明系统

工业照明系统

在 交易这被称为

非被动

失败,当时我在英国

从事这些电子系统的研究工作,

我记得当时

听到工程和科学界的第一个量子

比特 qubits

1988

这是一个有点轰动的客户,

但在其他地方,它并没有真的,呃,

并没有真正

引起人们的注意,人们并没有真正

注意到它,

但当时我想,哦,这

可能很有趣,有趣的

东西可能会出现

一年后,我搬到了德国

,解决了灯泡爆炸的问题

,我成为了万维网的助产士,

然后回来了 这个笨重的、有

缺陷的文档超文本系统是我们正在研究

的同类可扩展超文本系统中的第一个

,我记得

我和我的同事也在思考这

可能会

发生很大变化这可能会成为

一种全新的技术

我们没有意识到这会

是猫视频、

假新闻、网络战争

和魔兽世界之类的事情,但

我们确实认为这会发生一些重要的

事情,

我想如果当时你是否向

任何人普遍

询问了 网络人会说

这是一种编写文档的简洁方式,

但万维网为我们所做的

只是为我们提供了一种

呈现信息的新方式和一种相互交互的新方式

这种交互和信息

呈现

是基本的 范式转变 一些

全新的东西

它允许人们之间的互动达到一个新的水平

,正如我所说的那样,当时

它的

含义还不清楚 一个巧合,

当然,与此同时,

我们开始了

量子计算的第一个量子比特,

但是如果你想

了解一点关于量子

计算的知识,我们需要一个比喻

,当孩子们学会骑车时,我们需要某种稳定轮 一辆

自行车,

他们有稳定轮,我们需要

稳定轮,

而我们今天的稳定轮

将是硬币和球,

所以如果你把硬币扔

一千次,然后给出或取

一个标准偏差,你会得到 500 个

正面

和 500 个反面的标准

偏离

当你扔一千枚硬币时你看到的实际硬币数量

呃与素数分布有非常非常深刻的数学

关系

它在这里不相关但这是一个

有趣的事实

如果你有两个硬币

那么当你同时扔它们时就会

有一些 的时间你会得到头

加头头

加尾尾加头尾加

尾,

并且这些变体中的每一个

也将出现 250 次 es

加上或减去一个标准偏差

,三个硬币有

8 个不同的变化,每个变化

出现

125

次量子计算我们需要一个

不同的模块

模型

如果我们把这个球拿在这里,我们现在

可以定义一个任意点 它的

表面

在这里说,

如果我们旋转球然后停止它,

那么表面上的那个点

很可能指向一个

方向和任何其他方向

,我们可以用两个角度来描述

一个角度,我们称之为方位角

,就是这个 方式和角度,我们

称之为仰角,

严格来说,我们还

需要知道球的大小,

但是物理学家在作弊方面非常聪明,

所以通常在物理学中,我们

将球的半径定义为

使数学变得

非常容易的半径,并且 一些计算

非常简单

这是我们简单的

量子比特模型 量子比特

就像一个球 一个量子比特有一个特定的状态

当我们看它时有一个特定的方向

有趣的事情哈

当我们把球放在

屏幕后面的肘部或袋子里时

,想象一下你不能看到

这个袋子里面它是透明的,

所以你可以看到发生了什么所以

想象一下

我们有一个旋转的球 这里

发生了一些事情

,一个带有量子位的量子位

,球可以处于许多可能的

状态,同时有许多可能的位置,

我们称之为叠加,我们也可以

将两个

球连接在一起,这样位置

就完全是其中一个球的方向

确定

另一个的位置和方向,

反之亦然,

您甚至可以将其中三个或任意数量放入其中,

我们称之为纠缠

、纠缠和叠加

是量子力学的基本原理,那么问题就

变成了我们如何使用

我们需要将这些量子

比特转换为比特 最简单的例子是,如果你

想象一个量子比特

,你想象它是你对它

做了什么,它现在

指向 赤道

如果我们像硬币一样重复该实验

一千次

然后 500 次我们将测量它

向上和向下 500 次

所以它就像一个硬币

当我们以正确的方式准备量子比特时有趣的部分当然会发生

当我们以正确的方式纠缠量子比特时,

情况就不再如此了,

那么每个量子比特都会比硬币更喜欢一个或一个

,我们找到了一种方法来

通过使用进入硬币的纯概率内部或背后 量子力学

量子计算的诀窍是

在量子位之间构建这些球之间的相互作用,

以这样一种方式,正确的

答案你正在寻找的答案

出现得更频繁,而你

不寻找的答案

出现得更少,我们称之为 这种

建设性和破坏性

干扰,这是

每个量子程序背后的原理,

为了了解它实际上是如何工作的,我们

需要稍微了解

一下量子的历史 m 计算机实际上

诞生于 1973 年,

一个叫 charles bennett 的人,这是

从他的

科学论文中摘录

出来

的 这

意味着你可以执行计算机

程序,

让它产生结果,然后

向后运行,

这样你就处于开始时的初始状态

这很重要,因为它允许

我们现在用量子

力学

系统构建程序 换句话说,我们可以运行一个量子

程序来产生结果

而无需实际改变任何东西这

几年后的一个重要步骤,即 1988

年,当我与

爆炸的灯泡作斗争时

,第一个量子比特被

发明了,几年后 物理学家

理查德费曼提出了一个

证明

,证明你实际上可以使用

这些程序来

解决一个不可行的特定问题

在经典计算机上解决

它是如此复杂和如此困难,

经典计算机永远

无法解决它,

但量子计算机是微不足道的

,在 1994

年彼得肖开发了一种

因数分解的算法时再次发生了变化 因数

分解是一个难题,

我们 知道 5 乘以 3 是 15。5

和 3 是 15 的因数。如果我们

想分解一千位数

,即使使用我们今天拥有的最大的超级计算机

,这也需要数百万

或数十亿年的时间,彼得·肖的

算法加快了速度,

并且 如果我们有一台完美的量子计算机

,这意味着我们可以

在几周或几天甚至

几小时或几分钟内计算出这样的数字,这就是量子计算需要的

真正诞生和推动力

量子计算机非常漂亮

这是一个 ii 的内部

喜欢认为它们美丽的原因

是因为形式遵循

功能

和量子计算量子计算的功能

是最基本的

我们现在处于拥有

量子计算机的阶段 我们能够使用它们

我们能够对它们进行编程 我们正在

寻找

更好的工业化 更强大更

稳定的

技术 我们正在学习如何

为它们编写算法

我们' 正在研究不同类型的

量子计算 不同类型的

量子比特

不同类型的芯片为此而努力

所以我们现在已经脱离了我们

称之为量子的阶段 量子物理时代

我们现在处于量子准备时代的阶段

当我查看参加

大学量子计算课程的学生

人数或

在线暑期学校和课程的参加人数时,我看到了这一点,这些

数字令人震惊,我们现在正处于

准备进入阶段的阶段

量子优势和量子

优势

意味着量子计算机

超越经典计算机

变得如此高性能以至于它们

解决的

问题远远超出了我们

目前所能做的

租用计算机

我们拥有量子计算机

技术开始成熟

,问题是我们是否准备好迎接

量子计算机

我想我们已经准备好 我想向大家鼓励你

在这里的每个人

你都可以使用完全免费的

量子计算机

你可以试试 很简单

试一试 我想我们已经为量子计算机做好了准备

计算机

我想邀请你和我

一起尝试这个并学习这项

技术 任何人都想要一些量子位

谢谢