Why genetic research must be more diverse Keolu Fox

As a little Hawaiian,

my mom and auntie always told me
stories about Kalaupapa –

the Hawaiian leper colony

surrounded by the highest
sea cliffs in the world –

and Father Damien,

the Belgian missionary who gave his life
for the Hawaiian community.

As a young nurse,

my aunt trained the nuns
caring for the remaining lepers

almost a 100 years after
Father Damien died of leprosy.

I remember stories she told

about traveling down
switchback cliff paths on a mule,

while my uncle played
her favorite hula songs on the ukulele

all the way down to Kalaupapa.

You see, as a youngster,

I was always curious about a few things.

First was why a Belgian missionary
chose to live in complete isolation

in Kalaupapa,

knowing he would inevitably
contract leprosy

from the community of people
he sought to help.

And secondly,

where did the leprosy bacteria come from?

And why were Kānaka Maoli,

the indigenous people of Hawaii,

so susceptible to developing
leprosy, or “mai Pake?”

This got my curious about what
makes us unique as Hawaiians –

namely, our genetic makeup.

But it wasn’t until high school,

through the Human Genome Project,

that I realized I wasn’t alone

in trying to connect
our unique genetic ancestry

to our potential health,
wellness and illness.

You see,

the 2.7 billion-dollar project

promised an era of predictive
and preventative medicine

based on our unique genetic makeup.

So to me it always seemed obvious

that in order to achieve this dream,

we would need to sequence
a diverse cohort of people

to obtain the full spectrum
of human genetic variation on the planet.

That’s why 10 years later,

it continues to shock me,

knowing that 96 percent of genome studies

associating common genetic variation
with specific diseases

have focused exclusively
on individuals of European ancestry.

Now you don’t need a PhD

to see that that leaves four percent
for the rest of diversity.

And in my own searching,

I’ve discovered that far less
than one percent

have actually focused on indigenous
communities, like myself.

So that begs the question:

Who is the Human Genome
Project actually for?

Just like we have
different colored eyes and hair,

we metabolize drugs differently

based on the variation in our genomes.

So how many of you
would be shocked to learn

that 95 percent of clinical trials

have also exclusively featured
individuals of European ancestry?

This bias

and systematic lack of engagement
of indigenous people

in both clinical trials
and genome studies

is partially the result
of a history of distrust.

For example,

in 1989, researchers
from Arizona State University

obtained blood samples
from Arizona’s Havasupai tribe,

promising to alleviate the burden
of type 2 diabetes

that was plaguing their community,

only to turn around and use
those exact same samples –

without the Havasupai’s consent –

to study rates
of schizophrenia, inbreeding,

and challenge
the Havasupai’s origin story.

When the Havasupai found out,

they sued successfully for $700,000,

and they banned ASU from conducting
research on their reservation.

This culminated in a sort of domino effect

with local tribes in the Southwest –

including the Navajo Nation,

one of the largest
tribes in the country –

putting a moratorium on genetic research.

Now despite this history of distrust,

I still believe that indigenous people
can benefit from genetic research.

And if we don’t do something soon,

the gap in health disparities
is going to continue to widen.

Hawaii, for example,

has the longest life expectancy
on average of any state in the US,

yet native Hawaiians like myself

die a full decade
before our non-native counterparts,

because we have some
of the highest rates of type 2 diabetes,

obesity,

and the number one and number
two killers in the US:

cardiovascular disease and cancer.

So how do we ensure

the populations of people
that need genome sequencing the most

are not the last to benefit?

My vision is to make
genetic research more native,

to indigenize genome
sequencing technology.

Traditionally, genomes
are sequenced in laboratories.

Here’s an image of your classic
genome sequencer.

It’s huge.

It’s the size of a refrigerator.

There’s this obvious physical limitation.

But what if you could sequence
genomes on the fly?

What if you could fit a genome
sequencer in your pocket?

This nanopore-based sequencer

is one 10,000th the size
of your traditional genome sequencer.

It doesn’t have the same
physical limitations,

in that it’s not tethered to a lab bench
with extraneous cords,

large vats of chemicals
or computer monitors.

It allows us to de-black box genome
sequencing technology development

in a way that’s immersive
and collaborative,

activating and empowering
indigenous communities …

as citizen scientists.

100 years later in Kalaupapa,

we now have the technology to sequence
leprosy bacteria in real time,

using mobile genome sequencers,

remote access to the Internet

and cloud computation.

But only if that’s what
Hawaiian people want.

In our space,

on our terms.

IndiGenomics is about science
for the people by the people.

We’ll be starting with a tribal
consultation resource,

focused on educating
indigenous communities

on the potential use and misuse
of genetic information.

Eventually we’d like to have our own
IndiGenomics research institute

to conduct our own experiments

and educate the next generation
of indigenous scientists.

In the end,

indigenous people need to be partners in
and not subjects of genetic research.

And for those on the outside,

just as Father Damien did,

the research community needs
to immerse itself in indigenous culture

or die trying.

Mahalo.

(Applause)

作为一个小夏威夷人,

我的妈妈和阿姨总是给我
讲关于 Kalaupapa(

被世界上最高的海崖环绕的夏威夷麻风病人聚居地)

和为夏威夷社区

献出生命的比利时传教士 Damien 神父的故事

作为一名年轻的护士,在达米安神父死于麻风病将近 100 年后,

我的姑姑就开始训练修女
照顾剩余

的麻风病人。

我记得她讲过

关于骑骡子沿着拐弯的悬崖小路旅行的故事,

而我的叔叔
则用四弦琴演奏她最喜欢的草裙舞歌曲,

一直到卡劳帕帕。

你看,作为一个年轻人,

我总是对一些事情感到好奇。

首先是为什么一位比利时传教士
选择在卡劳帕帕完全孤立地生活

因为他知道他将不可避免地


他寻求帮助的人群中感染麻风病。

其次,

麻风病菌是从哪里来的?

为什么

夏威夷原住民卡纳卡毛里人

如此容易患上
麻风病或“mai Pake”?

这让我好奇是什么
让我们成为夏威夷人的独特之处——

即我们的基因构成。

但直到高中,

通过人类基因组计划

,我才意识到我并不是唯一一个

试图将
我们独特的遗传祖先

与我们潜在的健康、
健康和疾病联系起来的人。

你看,

这个耗资 27 亿美元的项目

承诺了一个

基于我们独特基因构成的预测和预防医学时代。

所以对我

来说,为了实现这个梦想,

我们需要对
一群不同的人

进行测序,以获得
地球上人类遗传变异的全谱,这似乎总是显而易见的。

这就是为什么 10 年后,

它继续让我感到震惊,

因为我知道 96% 的将

常见遗传变异
与特定疾病

联系起来的基因组研究都只关注
欧洲血统的个体。

现在你不需要博士学位

就能看到剩下的 4%
用于多样性。

在我自己的搜索中,

我发现只有
不到百分之一的

人真正关注
像我这样的土著社区。

所以这就引出了一个问题:

人类基因组
计划实际上是为谁服务的?

就像我们有
不同颜色的眼睛和头发一样,

我们根据基因组的变化以不同的方式代谢药物。

那么,当

得知 95% 的临床试验

还专门
针对欧洲血统的个体时,你们中有多少人会感到震惊?

这种偏见


土著人

在临床试验
和基因组研究

中系统性缺乏参与的部分原因
是不信任的历史。

例如

,1989 年,
亚利桑那州立大学的研究人员

从亚利桑那州的 Havasupai 部落获得了血液样本,

承诺减轻

困扰他们社区的 2 型糖尿病的负担,结果

却转身使用
了完全相同的样本——

未经 Havasupai 同意

– 研究
精神分裂症的发病率、近亲繁殖,


挑战 Havasupai 的起源故事。

当 Havasupai 发现后,

他们以 700,000 美元成功起诉,

并禁止 ASU
对其预订进行研究。

这最终导致了西南当地部落的一种多米诺骨牌

效应 -

包括该

国最大的
部落之一纳瓦霍族 -

暂停了基因研究。

现在,尽管有这种不信任的历史,

我仍然相信土著人民
可以从基因研究中受益。

如果我们不尽快采取行动

,健康差距的差距
将继续扩大。

例如,夏威夷的平均

预期寿命
是美国所有州中最长的,

但像我这样的夏威夷本土人比我们的非本土夏威夷人

早死了整整十年

因为我们有
一些最高的 2 型糖尿病、

肥胖症、

以及美国第一和
第二大杀手:

心血管疾病和癌症。

那么,我们如何

确保最需要基因组测序的人群

不会最后受益呢?

我的愿景是让
基因研究更加本土化,

使基因组
测序技术本土化。

传统上,基因组
在实验室进行测序。

这是您的经典
基因组测序仪的图像。

很大。

这是冰箱的大小。

有这个明显的物理限制。

但是,如果您可以
即时对基因组进行测序呢?

如果你能在口袋里装一个基因组
测序仪呢?

这种基于纳米孔的测序仪


传统基因组测序仪大小的 10,000 分之一。

它没有相同的
物理限制

,因为它没有被束缚在
带有外来电线、

大桶化学品
或计算机显示器的实验室工作台上。

它使我们能够以一种身临其境和协作的方式去黑盒基因组
测序技术开发

激活土著社区并赋予他们权力
……

作为公民科学家。

100 年后,在卡劳帕帕,

我们现在拥有了
实时测序麻风病细菌的技术,

使用移动基因组测序仪、

远程访问互联网

和云计算。

但前提是那是
夏威夷人想要的。

在我们的空间里

,按照我们的条件。

IndiGenomics 是关于
以人为本的科学。

我们将从部落
咨询资源开始,

重点对
土著社区

进行有关遗传信息的潜在使用和滥用
的教育。

最终,我们希望拥有自己的
IndiGenomics 研究所

来进行我们自己的实验

并教育
下一代本土科学家。

最后,

土著人民需要成为
基因研究的合作伙伴,而不是基因研究的对象。

对于那些在外面的人来说,

就像达米安神父所做的那样

,研究界
需要沉浸在本土文化中,

否则就会死去。

马哈洛。

(掌声)