Secrets of the X chromosome Robin Ball

The secrets of the X chromosome.

These women are identical twins.

They have the same nose,

the same hair color,

the same eye color.

But this one is color blind
for green light,

and this one isn’t.

How is that possible?

The answer lies in their genes.

For humans, the genetic information
that determines our physical traits

is stored in 23 pairs of chromosomes
in the nucleus of every cell.

These chromosomes are made up of proteins
and long, coiled strands of DNA.

Segments of DNA, called genes,
tell the cell to build specific proteins,

which control its identity and function.

For every chromosome pair,
one comes from each biological parent.

In 22 of these pairs, the chromosomes
contain the same set of genes,

but may have different versions
of those genes.

The differences arrive from mutations,

which are changes to the genetic sequence

that may have occurred
many generations ago.

Some of those changes have no effect,

some cause diseases,

and some lead to advantageous adaptations.

The result of having two versions
of each gene

is that you display a combination
of your biological parents' traits.

But the 23rd pair is unique,

and that’s the secret behind
the one color blind twin.

This pair, called the X and Y chromosomes,
influences your biological sex.

Most women have two X chromosomes

while most men have one X and one Y.

The Y chromosome contains genes
for male development and fertility.

The X chromosome, on the other hand,

contains important genes for things other
than sex determination or reproduction,

like nervous system development,

skeletal muscle function,

and the receptors in the eyes
that detect green light.

Biological males with
an XY chromosome pair

only get one copy of all these
X chromosome genes,

so the human body has evolved
to function without duplicates.

But that creates a problem
for people with two X chromosomes.

If both X chromosomes produced proteins,
as is normal in other chromosomes,

development of the embryo would be
completely impaired.

The solution is X inactivation.

This happens early in development
when an embryo with two X chromosomes

is just a ball of cells.

Each cell inactivates one X chromosome.

There’s a certain degree of randomness
to this process.

One cell may inactivate the X chromosome
from one parent,

and another the chromosome
from the other parent.

The inactive X shrivels into a clump
called a Barr body and goes silent.

Almost none of its genes
order proteins to be made.

When these early cells divide,
each passes on its X inactivation.

So some clusters of cells
express the maternal X chromosome,

while others express the paternal X.

If these chromosomes
carry different traits,

those differences
will show up in the cells.

This is why calico cats have patches.

One X had a gene for orange fur
and the other had a gene for black fur.

The pattern of the coat reveals
which one stayed active where.

Now we can explain our color blind twin.

Both sisters inherited one mutant copy
of the green receptor gene

and one normally functioning copy.

The embryo split into twins
before X inactivation,

so each twin ended up
with a different inactivation pattern.

In one, the X chromosome
with the normal gene was turned off

in the cells that eventually became eyes.

Without those genetic instructions,

she now can’t sense green light
and is color blind.

Disorders that are associated
with mutations of X chromosome genes,

like color blindness,

or hemophilia,

are often less severe in individuals
with two X chromosomes.

That’s because in someone with one normal
and one mutant copy of the gene,

only some of their cells would be
affected by the mutation.

This severity of the disorder
depends on which X got turned off

and where those cells were.

On the other hand, all the cells in
someone with only one X chromosome

can only express the mutant copy
of the gene if that’s what they inherited.

There are still unresolved questions
about X inactivation,

like how some genes on the X chromosome
escape inactivation

and why inactivation isn’t always random.

What we do know is that this mechanism

is one of the many ways that genes
alone don’t tell our whole story.

X染色体的秘密。

这些女人是同卵双胞胎。

他们有相同的鼻子

,相同的头发颜色

,相同的眼睛颜色。

但是这个
是绿光色盲,

而这个不是。

这怎么可能?

答案在于他们的基因。

对于人类来说
,决定我们身体特征

的遗传信息存储在每个细胞核中的 23 对染色体
中。

这些染色体由蛋白质
和长而卷曲的 DNA 链组成。

称为基因的 DNA 片段
告诉细胞构建特定的蛋白质,

这些蛋白质控制其身份和功能。

对于每一对染色体,
一个来自每个亲生父母。

在这些对中的 22 对中,染色体
包含相同的基因组,

但可能具有
这些基因的不同版本。

差异来自突变,突变

是可能在
许多代以前发生的基因序列的变化。

其中一些变化没有效果,

一些会导致疾病,

还有一些会导致有利的适应。 每个基因

有两个版本的结果

是你展示
了你亲生父母的特征的组合。

但第 23 对是独一无二的

,这就是
一对色盲双胞胎背后的秘密。

这对称为 X 和 Y 染色体,会
影响您的生理性别。

大多数女性有两条 X 染色体,

而大多数男性有一条 X 和一条

Y。Y 染色体包含
男性发育和生育的基因。

另一方面,X 染色体

包含
除性别决定或生殖以外的重要基因,

如神经系统发育、

骨骼肌功能

和眼睛
中检测绿光的受体。

具有 XY 染色体对的生物男性

只能获得所有这些
X 染色体基因的一个副本,

因此人体已经进化
到没有重复的功能。

但这会给
有两条 X 染色体的人带来问题。

如果两条 X 染色体都产生蛋白质,
就像其他染色体的正常

情况一样,胚胎的发育将
完全受损。

解决方案是 X 灭活。

这发生在发育早期,
当一个具有两条 X 染色体的胚胎

只是一个细胞球时。

每个细胞使一条 X 染色体失活。 这个过程

有一定程度的
随机性。

一个细胞可能使来自一个亲本的 X 染色体失活,而另一个细胞可能使
来自另一亲

本的染色体失活

不活跃的 X 收缩成一个
称为 Barr 体的团块并变得沉默。

几乎没有它的基因
命令蛋白质被制造出来。

当这些早期细胞分裂时,
每个细胞都会传递其 X 失活。

因此,一些细胞簇
表达母系 X 染色体,

而另一些则表达父系 X。

如果这些染色体
携带不同的特征,

那么这些差异
就会出现在细胞中。

这就是印花布猫有斑块的原因。

一个 X 有一个橙色毛皮
的基因,另一个有一个黑色毛皮的基因。

外套的图案揭示了
哪一个在哪里保持活跃。

现在我们可以解释我们的色盲双胞胎了。

两姐妹都继承
了绿色受体基因的一个突变拷贝

和一个正常功能的拷贝。

胚胎
在 X 失活之前分裂成双胞胎,

因此每个双胞胎最终
都有不同的失活模式。

其中一个是带有正常基因的 X 染色体

在最终变成眼睛的细胞中被关闭。

没有这些基因指令,

她现在无法感知绿光
并且是色盲。

与 X 染色体基因突变相关的疾病,

如色盲

或血友病,

在具有两条 X 染色体的个体中通常不太严重

那是因为在具有一个正常
和一个基因突变副本的人中,

只有他们的一些细胞会
受到突变的影响。

这种疾病的严重程度
取决于哪个 X 被关闭

以及这些细胞在哪里。

另一方面,
只有一条 X 染色体的人的所有细胞

只能表达该基因的突变
拷贝,如果这是他们所继承的。

关于 X 失活仍然存在未解决的问题

例如 X 染色体上的某些基因如何
逃脱失活

以及为什么失活并不总是随机的。

我们所知道的是,这种机制

只是基因
本身并不能说明我们整个故事的众多方式之一。