These Robots Come to the Rescue after a Disaster Robin Murphy TED Talks

Over a million people are killed
each year in disasters.

Two and a half million people
will be permanently disabled or displaced,

and the communities will take
20 to 30 years to recover

and billions of economic losses.

If you can reduce
the initial response by one day,

you can reduce the overall recovery

by a thousand days, or three years.

See how that works?

If the initial responders
can get in, save lives,

mitigate whatever flooding
danger there is,

that means the other groups can get in

to restore the water,
the roads, the electricity,

which means then the construction people,
the insurance agents,

all of them can get in
to rebuild the houses,

which then means
you can restore the economy,

and maybe even make it better
and more resilient to the next disaster.

A major insurance company told me

that if they can get a homeowner’s claim
processed one day earlier,

it’ll make a difference of six months

in that person getting
their home repaired.

And that’s why I do disaster robotics –

because robots can
make a disaster go away faster.

Now, you’ve already seen
a couple of these.

These are the UAVs.

These are two types of UAVs:

a rotorcraft, or hummingbird;

a fixed-wing, a hawk.

And they’re used extensively since 2005 –

Hurricane Katrina.

Let me show you how this hummingbird,
this rotorcraft, works.

Fantastic for structural engineers.

Being able to see damage from angles you
can’t get from binoculars on the ground

or from a satellite image,

or anything flying at a higher angle.

But it’s not just structural engineers
and insurance people who need this.

You’ve got things
like this fixed-wing, this hawk.

Now, this hawk can be used
for geospatial surveys.

That’s where you’re
pulling imagery together

and getting 3D reconstruction.

We used both of these at the Oso mudslides
up in Washington State,

because the big problem

was geospatial and hydrological
understanding of the disaster –

not the search and rescue.

The search and rescue teams
had it under control

and knew what they were doing.

The bigger problem was that river
and mudslide might wipe them out

and flood the responders.

And not only was it challenging
to the responders and property damage,

it’s also putting at risk
the future of salmon fishing

along that part of Washington State.

So they needed to understand
what was going on.

In seven hours, going from Arlington,

driving from the Incident Command Post
to the site, flying the UAVs,

processing the data, driving back
to Arlington command post –

seven hours.

We gave them in seven hours
data that they could take

only two to three days
to get any other way –

and at higher resolution.

It’s a game changer.

And don’t just think about the UAVs.

I mean, they are sexy – but remember,

80 percent of the world’s
population lives by water,

and that means our critical
infrastructure is underwater –

the parts that we can’t get to,
like the bridges and things like that.

And that’s why we have
unmanned marine vehicles,

one type of which you’ve already met,
which is SARbot, a square dolphin.

It goes underwater and uses sonar.

Well, why are marine vehicles so important

and why are they very, very important?

They get overlooked.

Think about the Japanese tsunami –

400 miles of coastland totally devastated,

twice the amount of coastland devastated
by Hurricane Katrina in the United States.

You’re talking about your bridges,
your pipelines, your ports – wiped out.

And if you don’t have a port,

you don’t have a way
to get in enough relief supplies

to support a population.

That was a huge problem
at the Haiti earthquake.

So we need marine vehicles.

Now, let’s look at a viewpoint
from the SARbot

of what they were seeing.

We were working on a fishing port.

We were able to reopen that fishing port,
using her sonar, in four hours.

That fishing port was told
it was going to be six months

before they could get
a manual team of divers in,

and it was going to take
the divers two weeks.

They were going to miss
the fall fishing season,

which was the major economy for that part,
which is kind of like their Cape Cod.

UMVs, very important.

But you know, all the robots
I’ve shown you have been small,

and that’s because robots
don’t do things that people do.

They go places people can’t go.

And a great example of that is Bujold.

Unmanned ground vehicles
are particularly small,

so Bujold –

(Laughter)

Say hello to Bujold.

(Laughter)

Bujold was used extensively
at the World Trade Center

to go through Towers 1, 2 and 4.

You’re climbing into the rubble,
rappelling down, going deep in spaces.

And just to see the World Trade Center
from Bujold’s viewpoint, look at this.

You’re talking about a disaster
where you can’t fit a person or a dog –

and it’s on fire.

The only hope of getting
to a survivor way in the basement,

you have to go through things
that are on fire.

It was so hot, on one of the robots,
the tracks began to melt and come off.

Robots don’t replace people or dogs,

or hummingbirds or hawks or dolphins.

They do things new.

They assist the responders,
the experts, in new and innovative ways.

The biggest problem is not
making the robots smaller, though.

It’s not making them more heat-resistant.

It’s not making more sensors.

The biggest problem is the data,
the informatics,

because these people need to get
the right data at the right time.

So wouldn’t it be great if we could have
experts immediately access the robots

without having to waste any time
of driving to the site,

so whoever’s there,
use their robots over the Internet.

Well, let’s think about that.

Let’s think about a chemical
train derailment in a rural county.

What are the odds that the experts,
your chemical engineer,

your railroad transportation engineers,

have been trained on whatever UAV
that particular county happens to have?

Probably, like, none.

So we’re using these kinds of interfaces

to allow people to use the robots
without knowing what robot they’re using,

or even if they’re using a robot or not.

What the robots give you,
what they give the experts, is data.

The problem becomes:
who gets what data when?

One thing to do is to ship
all the information to everybody

and let them sort it out.

Well, the problem with that
is it overwhelms the networks,

and worse yet, it overwhelms
the cognitive abilities

of each of the people trying to get
that one nugget of information

they need to make the decision
that’s going to make the difference.

So we need to think
about those kinds of challenges.

So it’s the data.

Going back to the World Trade Center,

we tried to solve that problem
by just recording the data from Bujold

only when she was deep in the rubble,

because that’s what the USAR team
said they wanted.

What we didn’t know at the time

was that the civil engineers
would have loved,

needed the data as we recorded
the box beams, the serial numbers,

the locations, as we went into the rubble.

We lost valuable data.

So the challenge is getting all the data

and getting it to the right people.

Now, here’s another reason.

We’ve learned that some buildings –

things like schools,
hospitals, city halls –

get inspected four times
by different agencies

throughout the response phases.

Now, we’re looking, if we can get
the data from the robots to share,

not only can we do things like
compress that sequence of phases

to shorten the response time,

but now we can begin
to do the response in parallel.

Everybody can see the data.

We can shorten it that way.

So really, “disaster robotics”
is a misnomer.

It’s not about the robots.

It’s about the data.

(Applause)

So my challenge to you:

the next time you hear about a disaster,

look for the robots.

They may be underground,
they may be underwater,

they may be in the sky,

but they should be there.

Look for the robots,

because robots are coming to the rescue.

(Applause)

每年有超过一百万人
在灾难中丧生。

250 万人
将永久残疾或流离失所

,社区将需要
20 到 30 年才能恢复,

并造成数十亿的经济损失。

如果您可以
将初始响应减少一天,

则可以将整体恢复

减少一千天,或三年。

看看它是如何工作的?

如果最初的响应者
能够进入,拯救生命,

减轻任何洪水的
危险,

这意味着其他团体可以进入

以恢复水
、道路、电力,

这意味着施工人员
、保险代理人,

所有的 他们可以
参与重建房屋,

这意味着
您可以恢复经济,

甚至可能使其更好
,更有弹性地应对下一次灾难。

一家大型保险公司告诉我

,如果他们能
提前一天处理房主的索赔,

那么

这个人
的房屋修缮时间将相差六个月。

这就是我做灾难机器人的原因——

因为机器人可以
让灾难更快地消失。

现在,您已经看到
了其中的几个。

这些是无人机。

这是两种类型的无人机

:旋翼机或蜂鸟;

固定翼,鹰。

自 2005 年以来,它们被广泛使用——

卡特里娜飓风。

让我向您展示这种蜂鸟,
这架旋翼飞机是如何工作的。

对于结构工程师来说太棒了。

能够从地面上的双筒望远镜

或卫星图像

或任何以更高角度飞行的东西无法看到的角度看到损坏。

但需要它的不仅仅是结构工程师
和保险人员。

你有
这样的固定翼,这只鹰。

现在,这只鹰可以
用于地理空间调查。

这就是您
将图像组合在一起

并进行 3D 重建的地方。

我们在华盛顿州的奥索泥石流中使用了这两种方法

因为最大的问题

是对灾难的地理空间和水文
理解——

而不是搜索和救援。

搜救队
控制住了它,

并且知道他们在做什么。

更大的问题是河流
和泥石流可能会将它们消灭

并淹没响应者。

这不仅
对响应者和财产损失构成挑战,

而且还危及

华盛顿州该地区鲑鱼捕捞的未来。

所以他们需要了解
发生了什么。

在七个小时内,从阿灵顿出发,

从事故指挥所开车
到现场,驾驶无人机,

处理数据,然后开车
返回阿灵顿指挥所——

七个小时。

我们在 7 小时内为他们提供了
数据,他们

只需两到三天
即可获得任何其他方式——

而且分辨率更高。

这是一个改变游戏规则的人。

不要只考虑无人机。

我的意思是,它们很性感——但请记住,

世界上 80% 的
人口靠水生活

,这意味着我们的关键
基础设施在水下——

我们无法到达的部分,
比如桥梁之类的东西。

这就是为什么我们有
无人海上交通工具,

其中一种你已经见过,
它是 SARbot,一种方形海豚。

它进入水下并使用声纳。

那么,为什么海上车辆如此重要

,为什么它们非常非常重要?

他们被忽视了。

想想日本海啸

——400 英里的海岸被完全摧毁,是美国卡特里娜飓风

摧毁的海岸面积的两倍

你在谈论你的桥梁
、管道、端口——被消灭了。

如果你没有港口,

你就没有
办法获得足够的救济物资

来支持人口。

这是
海地地震中的一个大问题。

所以我们需要海上车辆。

现在,让我们
从 SARbot

的角度来看他们所看到的。

我们在一个渔港工作。

使用她的声纳,我们能够在四个小时内重新开放那个渔港。

那个渔港被告知
,他们需要六个月的时间

才能让
一支人工潜水队进入,而潜水员

需要
两周时间。

他们将
错过秋季捕鱼季节

,这是该地区的主要经济,
有点像他们的科德角。

UMV,非常重要。

但是你知道,
我向你展示的所有机器人都很小

,那是因为机器人
不做人类做的事情。

他们去人们不能去的地方。

Bujold就是一个很好的例子。

无人驾驶地面
车辆特别小,

所以 Bujold——

(笑声)

向 Bujold 打个招呼。

(笑声)

Bujold
在世贸

中心被广泛使用 穿过 1 号、2 号和 4 号塔。

你爬进瓦砾中,
顺着绳索下降,深入太空。

只是
从布约德的角度看世界贸易中心,看看这个。

你说的是一场
无法容纳人或狗的灾难——

而且它着火了。

在地下室找到幸存者的唯一希望,

你必须经历
着火的事情。

太热了,在其中一个机器人上
,轨道开始融化并脱落。

机器人不会取代人或狗,

或蜂鸟或鹰或海豚。

他们做新事物。

他们
以新的和创新的方式协助响应者和专家。

不过,最大的问题不是
让机器人变小。

这并没有使它们更耐热。

它没有制造更多的传感器。

最大的问题是数据
,信息学,

因为这些人需要
在正确的时间获得正确的数据。

因此,如果我们可以让
专家立即访问机器人,

而不必浪费任何
时间开车到站点,那不是很好,

所以无论谁在那里,都
可以通过互联网使用他们的机器人。

好吧,让我们考虑一下。

让我们考虑一下
农村县的化学火车脱轨。

专家、
您的化学工程师、

您的铁路运输工程师

接受过
该县恰好拥有的任何无人机的培训的几率是多少?

可能,就像,没有。

所以我们正在使用这些类型的界面

来让人们在
不知道他们正在使用什么机器人的情况下使用机器人,

或者即使他们是否使用机器人。

机器人给你的,
他们给专家的,是数据。

问题变成了:
谁在什么时候得到什么数据?

要做的一件事是将
所有信息发送给每个人

,让他们整理出来。

好吧,问题
在于它压倒了网络,

更糟糕的是,它压倒
了每个人的认知能力

,他们试图获取

他们需要做出决定的决定所需要的那一点信息

所以我们需要
考虑这些挑战。

所以是数据。

回到世界贸易中心,

我们试图
通过仅在 Bujold 深入废墟时记录来自 Bujold 的数据来解决这个问题

因为这正是 USAR 团队
所说的他们想要的。

我们当时不

知道的是,土木工程师
会喜欢,

需要数据,因为我们记录
了箱形梁、序列号

、位置,当我们进入废墟时。

我们丢失了宝贵的数据。

因此,挑战在于获取所有数据

并将其提供给合适的人。

现在,这是另一个原因。

我们了解到,在整个响应阶段,一些建筑物

——比如学校、
医院、市政厅——


被不同的机构检查四次

现在,我们正在寻找,如果我们可以
从机器人那里获取数据以进行共享,

我们不仅可以执行
压缩该阶段序列

以缩短响应时间等事情,

而且现在我们可以
开始并行执行响应。

每个人都可以看到数据。

我们可以这样缩短它。

所以说真的,“灾难机器人”
是用词不当。

这与机器人无关。

这是关于数据的。

(掌声)

所以我对你的挑战

:下次你听到灾难的时候,

找机器人。

它们可能在地下,
可能在水下

,可能在天上,

但它们应该在那里。

寻找机器人,

因为机器人正在救援。

(掌声)