A robot that eats pollution Jonathan Rossiter

Hi, I’m an engineer

and I make robots.

Now, of course you all know
what a robot is, right?

If you don’t, you’d probably go to Google,

and you’d ask Google what a robot is.

So let’s do that.

We’ll go to Google
and this is what we get.

Now, you can see here there are
lots of different types of robots,

but they’re predominantly
humanoid in structure.

And they look pretty conventional

because they’ve got plastic,
they’ve got metal,

they’ve got motors and gears and so on.

Some of them look quite friendly,

and you could go up
and you could hug them.

Some of them not so friendly,

they look like they’re
straight out of “Terminator,”

in fact they may well be
straight out of “Terminator.”

You can do lots of really cool
things with these robots –

you can do really exciting stuff.

But I’d like to look
at different kinds of robots –

I want to make different kinds of robots.

And I take inspiration
from the things that don’t look like us,

but look like these.

So these are natural biological organisms

and they do some
really cool things that we can’t,

and current robots can’t either.

They do all sorts of great things
like moving around on the floor;

they go into our gardens
and they eat our crops;

they climb trees;

they go in water, they come out of water;

they trap insects and digest them.

So they do really interesting things.

They live, they breathe, they die,

they eat things from the environment.

Our current robots don’t really do that.

Now, wouldn’t it be great

if you could use some of those
characteristics in future robots

so that you could solve
some really interesting problems?

I’m going to look at a couple of problems
now in the environment

where we can use
the skills and the technologies

derived from these animals

and from the plants,

and we can use them
to solve those problems.

Let’s have a look
at two environmental problems.

They’re both of our making –

this is man interacting
with the environment

and doing some rather unpleasant things.

The first one is to do
with the pressure of population.

Such is the pressure
of population around the world

that agriculture and farming is required
to produce more and more crops.

Now, to do that,

farmers put more and more
chemicals onto the land.

They put on fertilizers,
nitrates, pesticides –

all sorts of things
that encourage the growth of the crops,

but there are some negative impacts.

One of the negative impacts is
if you put lots of fertilizer on the land,

not all of it goes into the crops.

Lots of it stays in the soil,

and then when it rains,

these chemicals go into the water table.

And in the water table,

then they go into streams,
into lakes, into rivers

and into the sea.

Now, if you put all
of these chemicals, these nitrates,

into those kinds of environments,

there are organisms in those environments
that will be affected by that –

algae, for example.

Algae loves nitrates, it loves fertilizer,

so it will take in all these chemicals,

and if the conditions are right,
it will mass produce.

It will produce masses
and masses of new algae.

That’s called a bloom.

The trouble is that
when algae reproduces like this,

it starves the water of oxygen.

As soon as you do that,

the other organisms
in the water can’t survive.

So, what do we do?

We try to produce a robot
that will eat the algae,

consume it and make it safe.

So that’s the first problem.

The second problem is also of our making,

and it’s to do with oil pollution.

Now, oil comes out
of the engines that we use,

the boats that we use.

Sometimes tankers
flush their oil tanks into the sea,

so oil is released into the sea that way.

Wouldn’t it be nice
if we could treat that in some way

using robots that could eat the pollution
the oil fields have produced?

So that’s what we do.

We make robots that will eat pollution.

To actually make the robot,

we take inspiration from two organisms.

On the right there
you see the basking shark.

The basking shark is a massive shark.

It’s noncarnivorous,
so you can swim with it,

as you can see.

And the basking shark opens its mouth,

and it swims through the water,
collecting plankton.

As it does that, it digests the food,

and then it uses that energy
in its body to keep moving.

So, could we make a robot like that –

like the basking shark
that chugs through the water

and eats up pollution?

Well, let’s see if we can do that.

But also, we take the inspiration
from other organisms.

I’ve got a picture here
of a water boatman,

and the water boatman is really cute.

When it’s swimming in the water,

it uses its paddle-like legs
to push itself forward.

So we take those two organisms

and we combine them together
to make a new kind of robot.

In fact, because we’re using
the water boatman as inspiration,

and our robot sits on top of the water,

and it rows,

we call it the “Row-bot.”

So a Row-bot is a robot that rows.

OK. So what does it look like?

Here’s some pictures of the Row-bot,

and you’ll see,

it doesn’t look anything like the robots
we saw right at the beginning.

Google is wrong;
robots don’t look like that,

they look like this.

So I’ve got the Row-bot here.

I’ll just hold it up for you.

It gives you a sense of the scale,

and it doesn’t look
anything like the others.

OK, so it’s made out of plastic,

and we’ll have a look now
at the components

that make up the Row-bot –

what makes it really special.

The Row-bot is made up of three parts,

and those three parts are really
like the parts of any organism.

It’s got a brain,

it’s got a body

and it’s got a stomach.

It needs the stomach to create the energy.

Any Row-bot will have
those three components,

and any organism
will have those three components,

so let’s go through them one at a time.

It has a body,

and its body is made out of plastic,

and it sits on top of the water.

And it’s got flippers on the side here –

paddles that help it move,

just like the water boatman.

It’s got a plastic body,

but it’s got a soft rubber mouth here,

and a mouth here –
it’s got two mouths.

Why does it have two mouths?

One is to let the food go in

and the other is to let the food go out.

So you can see really
it’s got a mouth and a derriere,

or a –

(Laughter)

something where the stuff comes out,

which is just like a real organism.

So it’s starting to look
like that basking shark.

So that’s the body.

The second component might be the stomach.

We need to get the energy into the robot
and we need to treat the pollution,

so the pollution goes in,

and it will do something.

It’s got a cell in the middle here
called a microbial fuel cell.

I’ll put this down,
and I’ll lift up the fuel cell.

Here. So instead of having batteries,

instead of having
a conventional power system,

it’s got one of these.

This is its stomach.

And it really is a stomach

because you can put energy in this side
in the form of pollution,

and it creates electricity.

So what is it?

It’s called a microbial fuel cell.

It’s a little bit
like a chemical fuel cell,

which you might have
come across in school,

or you might’ve seen in the news.

Chemical fuel cells
take hydrogen and oxygen,

and they can combine them together
and you get electricity.

That’s well-established technology;
it was in the Apollo space missions.

That’s from 40, 50 years ago.

This is slightly newer.

This is a microbial fuel cell.

It’s the same principle:

it’s got oxygen on one side,

but instead of having
hydrogen on the other,

it’s got some soup,

and inside that soup
there are living microbes.

Now, if you take some organic material –

could be some waste products, some food,

maybe a bit of your sandwich –

you put it in there,
the microbes will eat that food,

and they will turn it into electricity.

Not only that, but if you select
the right kind of microbes,

you can use the microbial fuel cell
to treat some of the pollution.

If you choose the right microbes,

the microbes will eat the algae.

If you use other kinds of microbes,

they will eat petroleum
spirits and crude oil.

So you can see
how this stomach could be used

to not only treat the pollution

but also to generate electricity
from the pollution.

So the robot will move
through the environment,

taking food into its stomach,

digest the food, create electricity,

use that electricity
to move through the environment

and keep doing this.

OK, so let’s see what happens
when we run the Row-bot –

when it does some rowing.

Here we’ve got a couple of videos,

the first thing you’ll see –
hopefully you can see here

is the mouth open.

The front mouth and the bottom mouth open,

and it will stay opened enough,

then the robot will start to row forward.

It moves through the water

so that food goes in
as the waste products go out.

Once it’s moved enough,

it stops and then it closes the mouth –

slowly closes the mouths –

and then it will sit there,

and it will digest the food.

Of course these microbial fuel cells,

they contain microbes.

What you really want is lots of energy

coming out of those microbes
as quickly as possible.

But we can’t force the microbes

and they generate a small amount
of electricity per second.

They generate milliwatts, or microwatts.

Let’s put that into context.

Your mobile phone for example,

one of these modern ones,

if you use it, it takes about one watt.

So that’s a thousand or a million times
as much energy that that uses

compared to the microbial fuel cell.

How can we cope with that?

Well, when the Row-bot
has done its digestion,

when it’s taken the food in,

it will sit there and it will wait
until it has consumed all that food.

That could take some hours,
it could take some days.

A typical cycle for the Row-bot
looks like this:

you open your mouth,

you move,

you close your mouth

and you sit there for a while waiting.

Once you digest your food,

then you can go about
doing the same thing again.

But you know what, that looks
like a real organism, doesn’t it?

It looks like the kind of thing we do.

Saturday night,
we go out, open our mouths,

fill our stomachs,

sit in front of the telly and digest.

When we’ve had enough,
we do the same thing again.

OK, if we’re lucky with this cycle,

at the end of the cycle
we’ll have enough energy left over

for us to be able to do something else.

We could send a message, for example.

We could send a message saying,

“This is how much pollution
I’ve eaten recently,”

or, “This is the kind of stuff
that I’ve encountered,”

or, “This is where I am.”

That ability to send a message
saying, “This is where I am,”

is really, really important.

If you think about the oil slicks
that we saw before,

or those massive algal blooms,

what you really want to do
is put your Row-bot out there,

and it eats up all of those pollutions,

and then you have to go collect them.

Why?

Because these Row-bots at the moment,

this Row-bot I’ve got here,

it contains motors, it contains wires,

it contains components
which themselves are not biodegradable.

Current Row-bots contain
things like toxic batteries.

You can’t leave those in the environment,

so you need to track them,

and then when they’ve finished
their job of work,

you need to collect them.

That limits the number
of Row-bots you can use.

If, on the other hand,

you have robot a little bit
like a biological organism,

when it comes to the end of its life,

it dies and it degrades to nothing.

So wouldn’t it be nice if these robots,

instead of being like this,
made out of plastic,

were made out of other materials,

which when you throw them out there,

they biodegrade to nothing?

That changes the way
in which we use robots.

Instead of putting 10 or 100
out into the environment,

having to track them,

and then when they die,

collect them,

you could put a thousand,

a million, a billion robots
into the environment.

Just spread them around.

You know that at the end of their lives,
they’re going to degrade to nothing.

You don’t need to worry about them.

So that changes the way
in which you think about robots

and the way you deploy them.

Then the question is: Can you do this?

Well, yes, we have shown
that you can do this.

You can make robots
which are biodegradable.

What’s really interesting
is you can use household materials

to make these biodegradable robots.

I’ll show you some;
you might be surprised.

You can make a robot out of jelly.

Instead of having a motor,
which we have at the moment,

you can make things
called artificial muscles.

Artificial muscles are smart materials,

you apply electricity to them,

and they contract,
or they bend or they twist.

They look like real muscles.

So instead of having a motor,
you have these artificial muscles.

And you can make
artificial muscles out of jelly.

If you take some jelly and some salts,

and do a bit of jiggery-pokery,

you can make an artificial muscle.

We’ve also shown you can make
the microbial fuel cell’s stomach

out of paper.

So you could make the whole
robot out of biodegradable materials.

You throw them out there,
and they degrade to nothing.

Well, this is really, really exciting.

It’s going to totally change the way
in which we think about robots,

but also it allows you
to be really creative

in the way in which you think
about what you can do with these robots.

I’ll give you an example.

If you can use jelly to make a robot –

now, we eat jelly, right?

So, why not make something like this?

A robot gummy bear.

Here, I’ve got some I prepared earlier.

There we go. I’ve got a packet –

and I’ve got a lemon-flavored one.

I’ll take this gummy bear –
he’s not robotic, OK?

We have to pretend.

And what you do with one of these
is you put it in your mouth –

the lemon’s quite nice.

Try not to chew it too much,
it’s a robot, it may not like it.

And then you swallow it.

And then it goes into your stomach.

And when it’s inside your stomach,
it moves, it thinks, it twists, it bends,

it does something.

It could go further down
into your intestines,

find out whether you’ve got
some ulcer or cancer,

maybe do an injection,
something like that.

You know that once
it’s done its job of work,

it could be consumed by your stomach,

or if you don’t want that,

it could go straight through you,

into the toilet,

and be degraded safely in the environment.

So this changes the way, again,
in which we think about robots.

So, we started off looking
at robots that would eat pollution,

and then we’re looking
at robots which we can eat.

I hope this gives you some idea

of the kinds of things
we can do with future robots.

Thank you very much for your attention.

(Applause)

嗨,我是一名工程师

,我制造机器人。

现在,你们当然都知道
什么是机器人,对吧?

如果你不这样做,你可能会去谷歌

,你会问谷歌什么是机器人。

所以让我们这样做。

我们会去谷歌
,这就是我们得到的。

现在,你可以看到这里有
很多不同类型的机器人,

但它们
在结构上主要是人形机器人。

它们看起来很传统,

因为它们有塑料、
金属、

马达和齿轮等等。

他们中的一些人看起来很友好

,你可以上去
拥抱他们。

他们中的一些人不太友好,

他们看起来像是
直接从“终结者”出来的

,实际上他们很可能是
直接从“终结者”出来的。

你可以用这些机器人做很多很酷的
事情——

你可以做很多令人兴奋的事情。

但我想
看看不同种类的机器人——

我想做不同种类的机器人。


从看起来不像我们

但看起来像这些的事物中汲取灵感。

所以这些是天然的生物有机体

,它们可以做一些
我们做不到的非常酷的事情,

而现在的机器人也做不到。

他们做各种很棒的事情,
比如在地板上四处走动;

他们进入我们的花园
,吃掉我们的庄稼;

他们爬树;

他们进水,又出水;

他们捕获昆虫并消化它们。

所以他们会做一些非常有趣的事情。

他们活着,他们呼吸,他们死去,

他们从环境中吃东西。

我们目前的机器人并没有真正做到这一点。

现在,如果你能

在未来的机器人中使用其中的一些特性,

这样你就可以解决
一些真正有趣的问题,那不是很好吗?

我现在要看看环境中的几个问题

,我们可以使用

从这些动物

和植物中获得的技能

和技术,我们可以使用它们
来解决这些问题。

让我们来
看看两个环境问题。

它们都是我们创造的——

这是人
与环境的互动

,做一些相当不愉快的事情。

第一个
与人口压力有关。

这就是
世界各地人口的压力,

需要农业和
农业生产越来越多的农作物。

现在,为了做到这一点,

农民在土地上投入了越来越多的
化学品。

他们施用化肥、
硝酸盐、杀虫剂——

各种
促进作物生长的东西,

但也有一些负面影响。

负面影响之一是,
如果您在土地上投放大量肥料,但

并非所有肥料都用于农作物。

很多它留在土壤中

,然后当下雨时,

这些化学物质会进入地下水位。

然后在地下水位中,

它们进入溪流、
湖泊、河流

和大海。

现在,如果你把
所有这些化学物质,这些硝酸盐,

放到那种环境中,

那些环境中的有机体
就会受到影响——

例如藻类。

藻类喜欢硝酸盐,它喜欢肥料,

所以它会吸收所有这些化学物质

,如果条件合适,
它会大量生产。

它将产生大量
和大量的新藻类。

那叫花开。

麻烦的是,
当藻类像这样繁殖时,

它会使水缺乏氧气。

一旦你这样做,水中

的其他
生物就无法生存。

那么我们该怎么办?

我们试图生产一个机器人
,它会吃掉藻类,

消耗它并使其安全。

所以这是第一个问题。

第二个问题也是我们自己造成的,

和石油污染有关。

现在,石油来自
我们使用的发动机

,我们使用的船只。

有时
油轮将油箱冲入海中,

因此石油以这种方式释放到海中。

如果我们能以某种方式

使用可以吃掉油田产生的污染的机器人来处理这个问题,那不是很好
吗?

这就是我们所做的。

我们制造会吃掉污染的机器人。

为了真正制造机器人,

我们从两种生物中汲取灵感。

在右侧,
您可以看到姥鲨。

姥鲨是一种巨大的鲨鱼。

它不是肉食性的,
所以你可以和它一起游泳,

正如你所见。

姥鲨张开嘴

,在水中游来游去,
收集浮游生物。

当它这样做时,它会消化食物,

然后利用
体内的能量来保持运动。

那么,我们能否制造出这样的机器人——

就像姥鲨
那样在

水中游弋并吞噬污染?

好吧,让我们看看我们是否可以做到这一点。

而且,我们
从其他生物中汲取灵感。

我这里
有一张水上船夫的照片

,水上船夫真的很可爱。

当它在水中游泳时,

它会用它的桨状
腿推动自己向前。

所以我们把这两种

有机体结合起来
,制造出一种新型机器人。

事实上,因为我们
以水上船夫为灵感

,我们的机器人坐在水面上

,它会划船,

我们称之为“划船机器人”。

所以 Row-bot 是一个会划船的机器人。

行。 那么它是什么样子的呢?

这是 Row-bot 的一些图片

,你会看到,

它看起来不像
我们一开始看到的机器人。

谷歌错了;
机器人看起来不像,

它们看起来像这样。

所以我在这里有 Row-bot。

我会为你保留它。

它给你一种规模感

,它看起来
不像其他的。

好的,所以它是用塑料制成的

,我们现在来看看

构成 Row-bot 的组件——

是什么让它真正特别。

Row-bot 由三个部分组成

,这三个部分真的
就像任何有机体的部分。

它有大脑,

有身体

,还有胃。

它需要胃来产生能量。

任何 Row-bot 都会有
这三个组成部分

,任何有机体
都会有这三个组成部分,

所以让我们一次一个地了解它们。

它有一个身体

,它的身体是用塑料制成的

,它坐在水面上。

它的侧面有脚蹼——

帮助它移动的桨,

就像水上船夫一样。

它有一个塑料机身,

但这里有一个柔软的橡胶嘴,

这里还有一个嘴——
它有两个嘴。

为什么它有两个嘴巴?

一是让食物进来

,二是让食物出去。

所以你可以看到
它真的有一张嘴和一个臀部,

或者——

(笑声)

东西出来的东西

,就像一个真正的有机体。

所以它开始看起来
像那只姥鲨。

所以这就是身体。

第二个组成部分可能是胃。

我们需要将能量输入机器人
,我们需要处理污染,

所以污染进入

,它会做一些事情。

它的中间有一个电池,
称为微生物燃料电池。

我会放下这个
,我会举起燃料电池。

这里。 因此,与其拥有电池,

不如
拥有传统的电力系统,

它拥有其中之一。

这是它的胃。

它真的是一个胃,

因为你可以将能量以污染的形式放在这一侧

,它会产生电力。

那是什么?

它被称为微生物燃料电池。

它有点
像化学燃料电池

,你可能
在学校遇到过,

或者你可能在新闻中看到过。

化学燃料电池
吸收氢气和氧气

,它们可以将它们结合在一起
,从而获得电力。

那是成熟的技术;
它在阿波罗太空任务中。

那是40、50年前的事了。

这有点新。

这是一种微生物燃料电池。

原理是一样的:

一边是氧气,另一边

不是
氢气,

而是汤

,汤里
有活的微生物。

现在,如果你拿一些有机材料——

可能是一些废物,一些食物,

也许是你的三明治——

你把它放在那里
,微生物会吃掉这些食物

,它们会把它变成电能。

不仅如此,如果你选择
了合适的微生物,

你可以使用微生物燃料电池
来处理一些污染。

如果你选择了正确的微生物

,微生物就会吃掉藻类。

如果你使用其他种类的微生物,

它们会吃石油
精和原油。

所以你可以
看到这个胃不仅可以

用来处理污染

,还可以用来
从污染中发电。

所以机器人将
在环境中移动,

将食物送入胃中,

消化食物,产生电能,

利用电能
在环境中移动

并继续这样做。

好的,让我们看看
当我们运行 Row-bot

时会发生什么——当它进行一些划船时。

在这里,我们有几个视频,

你会看到的第一件事——
希望你能在这里看到

张开的嘴。

前嘴和下嘴张开,

并保持足够张开,

然后机器人开始向前划行。

它在水中移动,

使食物
随着废物的排出而进入。

一旦它移动得足够多,

它就会停下来,然后合上嘴——

慢慢地合上嘴——

然后它会坐在那里,

消化食物。

当然这些微生物燃料电池,

它们含有微生物。

你真正想要的是尽快从这些微生物中释放出大量能量

但我们不能强迫微生物

,它们每秒会产生
少量电力。

它们产生毫瓦或微瓦。

让我们把它放到上下文中。

例如你的手机

,这些现代手机之一,

如果你使用它,它大约需要一瓦。

因此,

与微生物燃料电池相比,所消耗的能量是其一千或一百万倍。

我们该如何应对呢?

好吧,当 Row-
bot 完成消化,

当它把食物放进去时

,它会坐在那里
等到它吃完所有的食物。

这可能需要几个小时,
也可能需要几天。

Row-bot 的典型循环
如下所示

:张开嘴

,移动

,闭上嘴,

然后坐在那里等待一会儿。

一旦你消化了你的食物

,你就可以
再次做同样的事情。

但是你知道吗,那看起来
像一个真正的有机体,不是吗?

它看起来像我们做的那种事情。

星期六晚上,
我们出去,张开嘴,

填饱肚子,

坐在电视机前消化。

当我们受够了,
我们再次做同样的事情。

好吧,如果我们在这个循环中幸运的话,

在循环结束时,
我们将有足够的能量剩余

让我们能够做其他事情。

例如,我们可以发送一条消息。

我们可以发送一条消息说,

“这是
我最近吃了多少污染”,

或者,“这
是我遇到的那种东西”,

或者,“这就是我所在的地方”。

发送信息
说“这就是我所在的地方”

的能力非常非常重要。

如果你想想
我们之前看到的浮油,

或者那些大量的藻类繁殖,

你真正想做的
就是把你的 Row-bot 放在那里

,它会吃掉所有这些污染,

然后你必须去收集它们 .

为什么?

因为目前这些 Row-bots,

这个我在这里得到的 Row-bot,

它包含电机,它包含电线,

它包含
本身不可生物降解的组件。

当前的 Row-bots 包含
有毒电池之类的东西。

您不能将它们留在环境中,

因此您需要跟踪它们,

然后当它们完成
工作时,

您需要收集它们。

这限制了
您可以使用的 Row-bots 的数量。

另一方面,

如果你的机器人有点
像生物有机体,

当它生命的尽头时,

它会死去,然后退化为无。

那么,如果这些机器人

不是像这样
由塑料制成,

而是由其他材料制成

,当你把它们扔在那里时,

它们会生物降解成无物,这不是很好吗?

这改变
了我们使用机器人的方式。

无需将 10 或 100
个机器人放入环境中

,必须跟踪它们,

然后在它们死亡时

收集它们,

您可以将一千、

一百万、十亿个机器人
放入环境中。

把它们散开。

你知道,在他们生命的尽头,
他们会退化为一无所有。

您无需担心它们。

因此,这会
改变您对机器人的看法

以及部署它们的方式。

那么问题来了:你能做到吗?

嗯,是的,我们已经
证明你可以做到这一点。

你可以制造
可生物降解的机器人。

真正有趣的
是,您可以使用家用

材料制作这些可生物降解的机器人。

我给你看一些;
你可能会感到惊讶。

你可以用果冻做一个机器人。

你可以制造一种
叫做人造肌肉的东西,而不是我们目前拥有的马达。

人造肌肉是智能材料,

你给它们通电

,它们就会收缩、
弯曲或扭曲。

它们看起来像真正的肌肉。

因此,
您拥有这些人造肌肉,而不是电动机。

你可以
用果冻制造人造肌肉。

如果你吃一些果冻和一些盐,

然后做一些小游戏,

你就可以制造出人造肌肉。

我们还展示了您可以用纸
制作微生物燃料电池的

胃。

所以你可以用
可生物降解的材料制造整个机器人。

你把它们扔在那里
,它们就会退化成一无所有。

嗯,这真的,真的很令人兴奋。

这将彻底
改变我们对机器人的看法,

但它也让你

思考你可以用这些机器人做什么的方式上发挥真正的创造力。

我给你举个例子。

如果你能用果冻做一个机器人——

现在,我们吃果冻,对吧?

那么,为什么不做这样的事情呢?

一个机器人小熊软糖。

在这里,我有一些我之前准备好的。

我们去吧。 我有一个小包——

还有一个柠檬味的。

我会带上这只小熊软糖——
他不是机器人,好吗?

我们必须假装。

你用其中之一做的
就是把它放进嘴里

——柠檬很好吃。

尽量不要咀嚼太多,
它是机器人,它可能不喜欢它。

然后你吞下它。

然后它进入你的胃。

当它在你的胃里时,
它会移动,它会思考,它会扭曲,它会弯曲,

它会做一些事情。

它可以深入
到你的肠道,

查明你是否
有溃疡或癌症,

也许做一次注射,
诸如此类。

你知道一旦
它完成了它的工作,

它可能会被你的胃消耗掉,

或者如果你不想这样,

它可以直接穿过你,

进入厕所,

并在环境中安全地降解。

因此,这再次改变了
我们思考机器人的方式。

所以,我们开始研究
会吃污染的机器人,

然后我们研究
可以吃的机器人。

我希望这能让你


我们可以用未来的机器人做些什么事情有所了解。

非常感谢您的关注。

(掌声)