How Robot Armies Will Save Our Future Cities

[Music]

imagine

being commissioned to dismantle a

radioactive

exhaust stack or to dispose of

millions of tons of water contaminated

with

radioactive material it is not a

hypothetical situation

today close to a decade after the 2011

fukushima nuclear disaster in japan

real people are facing these toxic

questions

have to handle danger safely so as not

to poison

a people a country or divorce water

supply

our world faces inhuman challenges every

day

whether industrial accidents natural

disasters

or self-inflicted catastrophes

circumstances that i call

inhuman because they compromise our

safety

and our survival our future world

needs in human help we will need

robots

until now engineers mathematicians

and roboticists have worked together

to build and move single robots like

this one

the model for this was simple at least

for me

when my son nikon took his first

steps two years ago i saw matt

a numerical sequence that played out

like computer code

called an algorithm isn’t that

what you see when you watch a baby walk

for the first time

turns out babies are the perfect

mathematical models to help us

understand the principles of locomotion

that underline

human agility but like my son

i was not content with baby steps

i wanted my research to take off running

too

a robot modeled after a boy is not

enough to do the work our future demands

we will need teams of robots or

collaborative robots

core robots and so we have studied

new models to understand how to build

more agile and collaborative robots one

model

to inspire their form and another to

exemplify their function

the first model was trotting around my

house with nikon

telly ever notice have your pet cat or

pet dog

has an almost uncanny ability to land on

its feet

or maneuver the obstacle course of

furniture and people

in your house turns out

four-legged animals exercise and

unparalleled dexterity

that enables them to traverse a globe of

value train

more than half of our world is

inaccessible

to humans and the real vehicles we have

invented

so to be most useful our robots

should take form as quadra pets

so

the second model was circling my house

in the dirt and armies social ants have

evolved effective competencies to

cooperate with each

other towards collective goals

collective phenomena

in social ants are the result of a

hundred million years of evolution

they work together to transport large

payloads that can be hundreds or even

thousands of times the individual ant

they work in homogeneous or

heterogeneous teams

with smart leaders to carry objects over

rough terrain to their nest

an impossible feat alone is made

possible

together so our quadrupedal robots

must function like ants with models in

place we could now ask a new question

one that still plagues us today how do

we mobilize

teams of collaborative leg robots put

another way

how do we get individual robots to work

together

to solve a problem when they have no

intuition

to react sensibly to changing

circumstances

we could just throw into one computer

all of the programmed instructions we

have created

for the single leg robots and then their

instructions overlap

hope they will cooperate doesn’t sound

good

does it here is why let me explain the

calculations necessary to

inform a single robot’s movement the

quadrupedal core robots we are

engineering

have a manipulator that looks like this

essentially an arm that enables them to

help humans

with manual labor intensive tasks

like construction manufacturing assembly

or disaster relief

each of these robots must decide where

it will move

how and how much force it will exert

on a target while maintaining its

balance

the execution of these variables depends

upon the control algorithms we create

for the robots remember

control algorithms are sequences of

computer implantable instructions

that address the decision-making problem

for individual

members of a team for example a set of

algorithms must compute

the required torque generated by each of

22 joint motors

during every millisecond of a single

robot’s movement from point a to point b

while accounting for any environmental

obstacles it could encounter okay

so that’s for one robot

now imagine a team of 50 collaborative

leg robots

working together to carry a container of

contaminated water

individual team members still have the

same variables

where to move how much force to exert on

their target

and how to balance plus an additional

variable

how best to coordinate its individual

movements

with others to play as part of a team

like

leader puller or lifter

that means we would need to design and

implement

control algorithms that compute required

torques for

50 times 22 joint motors

while accounting for thousands of

optimal decision variables

environmental circumstantial or

otherwise

every millisecond and if that is not

enough

all of these decision making algorithms

will have to be

executable in real time

okay we buckle down and do it right

like ants well we have a few

problems that ants have had about 100

million years

to solve at the root of them

is the fact that we cannot have a

centralized computer

to disseminate and coordinate the

control algorithms

like the ones i just described it

creates

a computational bottleneck too much

input

for too complex and output put another

way

one computer brain cannot interpret the

data from all joints

and variables and relay instructions

back

to robots for simultaneous optimal

function

we must instead establish a paradigm

shift from

centralized approaches to more versatile

approaches

that use distributed networks of

computational

algorithms to orchestrate sophisticated

core robot teams

each robot must have its own computer

and computational algorithm

that is resilient and versatile enough

to make

cooperative decisions based on its own

measurements and if each robot

function reactively it can efficiently

cooperate with

others

okay how do we do it the evolution of

robotic teams

that cooperatively manipulate objects

can be described by complex systems

complex systems are composed of many

components that

interact with each other in my lab

we develop what are called advanced

distributed control algorithms

based on optimization techniques that

allow

collaborative locomotion of leg robots

while carrying objects

but every step forward prompts

a new question and the search for

answers

leads me back to my yard where nikon

and telly are playing looking closer at

the ants i wonder

how can our mathematical algorithms

replicate

the biologically driven collective

phenomena

that these social insects have perfected

how can we advance the growing body of

research

suggesting that the animal locomotion

control is achieved through distributed

control schemes

how can we transcribe ant behavior into

control algorithms and why are those

instructions

into mechanics of core robot brains

answers would not only save lives

they would improve the quality of human

lives

in addition to disaster relief medical

applications

of distributed control algorithms

and collaborative locomotion include the

development

of robot guide dogs for the 1.3

billion people living with visual

impairment

and the development of powered

prosthetic legs

to stabilize accident victims and people

with disabilities our future cities

need robots teams of robots

to execute sensitive and sophisticated

solutions

to otherwise life-threatening

environments

to bring stasis and efficiency to our

ever

increasing human needs to collaborate

with humans to navigate an uncertain

future

that is guaranteed to include a

complexity only matched

by an interconnected network of

quadropodalco robots

how do we get there the answer

might be crawling in the dirt

you

[音乐]

想象一下

,受委托拆除

放射性

排气烟囱或处理

数百万吨被放射性物质污染的水

,在 2011 年日本福岛核灾难近十年后的今天,这不是一个假设的情况

真正的人们正面临着这些有毒物质

问题

必须安全地处理危险,

以免毒害

一个国家一个国家或断绝供水

我们的世界每天都面临着非人道的挑战,

无论是工业事故、自然

灾害

还是自己造成的灾难

,我称之为

不人道的情况,因为它们危及我们的

安全

和我们的生存 未来世界

需要人类的帮助 我们将需要

机器人

直到现在工程师 数学家

和机器人专家一直在

合作建造和移动像这样的单个机器人

这个模型至少对

我来说很简单 两年前我的儿子尼康迈出了第一步

看到了一个像计算机代码一样的数字序列,

称为 算法并不是

你第一次看婴儿走路时看到的

那样,结果婴儿是完美的

数学模型,可以帮助我们

理解强调

人类敏捷性的运动原理,但就像我儿子一样,

我不满足于婴儿步

我希望我的研究也能起飞

以男孩为模型的机器人

不足以完成我们未来的需求

我们将需要机器人团队或

协作机器人

核心机器人,因此我们研究了

新模型以了解如何构建

更敏捷 和协作机器人 一个

模型

来激发他们的形式,另一个模型来

体现它们的

功能 第一个模型是在我的

房子里用尼康

电视小跑 曾经注意到你的宠物猫或

宠物狗

具有几乎不可思议

的双脚着陆

或操纵障碍物的能力 你家中的

家具和人

变成了

四足动物运动和

无与伦比的灵巧

,使它们能够穿越全球

价值火车或

e 我们的世界有一半是

人类无法进入的,我们发明的真正的交通工具

是最有用的,我们的机器人

应该变成四边形宠物,

所以第二个模型是在泥土中绕着我的房子

转,军队社交蚂蚁已经

进化出有效的能力来

相互合作以

实现集体目标

社会蚂蚁中的集体现象是一

亿年进化的结果

它们一起工作以运输

可能是

单个蚂蚁的数百甚至数千倍的大型有效载荷

他们在同质或

异构团队

中工作 领导者在

崎岖的地形上搬运物体到他们的巢穴

一个不可能的壮举单独成为

可能,因此我们的四足机器人

必须像蚂蚁一样运作,模型

到位 我们现在可以提出

一个今天仍然困扰我们的新问题

腿机器人

换一种方式

我们如何让单个机器人一起工作

来解决一个问题 当他们没有

直觉

对不断变化的环境做出明智的反应时,

我们可以将我们为单腿机器人创建的所有程序指令放入一台计算机

,然后他们的

指令重叠

希望他们会合作听起来

不好,这就是为什么 让我解释一下

通知单个机器人运动所需的计算

我们正在设计的四足核心

机器人有一个看起来像这样的机械手,

本质上是一个手臂,使他们能够

帮助人类

完成体力劳动密集型任务,

如建筑制造组装

救灾 机器人必须决定

它会移动

到哪里,在保持平衡的同时,它将向目标施加多大的

力这些变量的执行

取决于我们为机器人创建的控制算法

记住

控制算法是

计算机可植入指令

的序列,用于解决决策 -

为个别

成员制造问题o 例如,FA 团队

必须计算

22 个关节电机

中的每一个在单个

机器人从 a 点移动到 b 点的每一毫秒期间产生的所需扭矩,

同时考虑到

它可能遇到的任何环境障碍,这

对现在的一个机器人来说是可行的

想象一个由 50 个协作

腿机器人组成的

团队一起搬运一个装有污染的水的容器,

每个团队成员仍然有

相同的变量

,要移动到哪里,对目标施加多大的力

,如何保持平衡,再加上一个额外的

变量,

如何最好地协调其个人

与其他人一起作为团队的一部分进行运动,

例如

领头拉拔器或升降器

,这意味着我们需要设计和

实施

控制算法,计算

50 倍 22 个关节电机所需的扭矩,

同时考虑数千个

环境环境或其他情况下的最佳决策变量或

每毫秒 如果这还不够

所有这些决策

算法必须是

实时可执行的

好吧,我们要

像蚂蚁一样认真做好它 我们有

一些蚂蚁已经用了大约 1

亿年的时间

来解决的问题

根本原因是我们不能有一个

集中的

计算机传播和协调

控制算法,

就像我刚才描述的那样,它

造成

了计算瓶颈太多

输入太复杂和输出换句话说,

一台计算机大脑无法解释

来自所有关节

和变量的数据,并将指令转发

回机器人同时进行

相反,我们必须建立一个范式

转变,从

集中式方法到更通用的

方法

,使用分布式

计算

算法网络来协调复杂的

核心机器人团队

每个机器人必须拥有自己的计算机

和计算算法

,这些算法具有足够的弹性和通用性,

能够

根据基础做出合作决策 根据自己的

测量结果,如果每个 机器人

具有反应性功能 它可以有效地

与他人合作

好的 我们该怎么做

协作操作物体的机器人团队的进化

可以用复杂系统来描述

复杂系统由许多

相互影响的组件组成 在我的实验室中

我们开发了所谓 先进的

分布式控制算法

基于优化技术,

允许

腿部机器人

在搬运物体时进行协作运动,

但每向前迈出一步都会提示

一个新问题,寻找

答案将我带回我的院子,尼康

和电视正在玩的地方靠近

我想知道的蚂蚁

我们的数学算法如何

复制

这些社会昆虫已经完善的生物驱动的集体

现象 我们如何推进越来越多的

研究

表明动物运动

控制是通过分布式控制方案实现的

我们如何将蚂蚁行为转录为

控制算法以及为什么 e 这些

指令

对核心机器人大脑的

回答不仅可以挽救生命,

还可以提高人类生活质量

,此外

,分布式控制算法

和协作运动的救灾医疗应用包括

为 13 亿人开发机器人导盲犬

随着视觉

障碍

用于稳定事故受害者和

残疾人的动力假肢的发展,我们未来的城市

需要机器人团队

来执行敏感和复杂的

解决方案

,以应对威胁生命的

环境

,从而为我们

不断

增长的人类需求带来稳定和效率

与人类合作,在一个不确定的

未来

中航行