My seven species of robot Dennis Hong

so the first robots talk about is called

Strider it stands for a self-excited try

Peter dynamic experimental robot it’s a

robot that has three legs which is

inspired by nature but have you seen

anything in nature and an animal that

has three legs

probably not so why I do I call this a

biologically inspired robot how would it

work but before that let’s look at pop

culture so you know HG Wells world the

world’s novel a movie and what you see

over here is a very popular video game

and and these are fiction they describe

these alien creatures and robots that

have three legs that terrorize earth but

my robot Strider does not move like this

so this is an actual dynamic simulation

animation it’s going to show you how the

robot works it flips this body 180

degrees its swings its legs between the

two legs and catches the fall so that’s

how it walks but when you look at us

human being bipedal walking what you’re

doing is you’re not really using a

muscle to lift your leg and do like and

walk like a robot right what you’re

doing is you really swing your leg and

catch the ball stand up again swing your

leg and cast a fall you’re using your

built-in dynamics the physics of your

body just like a pendulum we call that

the concept of passive dynamic

locomotion what you’re doing is when you

stand up potential energy to kinetic

energy potential energy killing energy

and it’s a constantly falling process so

even though there’s nothing in nature

that looks like this really we’re

inspired by biology and applying the

principles of walking to this robot thus

is a biologically inspired robot what

you see over here this is what we want

to do next we want to fold up the legs

and shoot it up for long-range motion

and it deploys legs it looks almost like

Star Wars when it lands it absorbs the

shock and starts walking what you see

over here this yellow thing this is not

a death ray this is a just to show you

that if you have cameras of different

type of sensors because it is tall it’s

1.8 meters tall you can see over

obstacles and bushes and those kind of

things so we have two prototypes the

first version in the back that’s Strider

one the one in the front the smaller

Strider - the problem that we had with

Strider one is was just too heavy in the

body we had sown

mortars you know aligning the joints and

those kind of things so we decided to

synthesize a mechanical mechanism so I

can get rid of all the motors and with a

single motor we can coordinate all the

motions this be kind of a solution to a

problem instead of using mechatronics so

with this now the top part is are light

enough so it’s walked in our lab this is

our very first successful step it’s

still not perfected it Coffee falls down

so we still have a lot of work to do the

second robot I want to talk about is

called impasse it stands for intelligent

mobility platform with actuated spoke

system so it’s a wheel leg hybrid robot

so think of a rimless wheel or a spoke

wheel but the spokes individually move

in and out of the hub so it’s a wheel

leg hybrid we’re literally reinventing

the wheel here let me show how it

demonstrate how it works so in this

video we’re using an approach called a

reactive approach just simply using the

tactile sensors on the feet it’s trying

to walk over a changing terrain a soft

terrain where it then pushes down a

changes and just by the tactile

information it successfully crosses over

these type of train but when it

encounters a very extreme terrain in

this case this obstacle is more than

three times at the height of the robot

then it switches to a deliberate mode

where it uses a laser rangefinder and

camera systems to identify the obstacle

on the sides and it plans carefully

plans the motion of the spokes and

coordinates it so that it can show this

kind of very very impressive mobility

you probably haven’t seen anything like

this out there this is a very high

mobility robot that we developed called

impasse ah is that cool ah when you

drive your car when you steer your car

you use a method called akmed steering

yuuna for the front wheels rotate like

this for both of the small you know

wheeled robot they use a method called

differential stirring where the left and

right wheels turn the opposite direction

for impasse because of many many

different types of motion for example in

this case even the left and right wheel

is connected with a single axle rotating

same angular velocity we just simply

change the length of the scope affected

diameter and then you get turned to left

but to right so these are just some

examples of the neat things that we can

do with impasse this robot is called

climber cable suspended limp intelligent

matching behavior robot so I’ve been

talking to a lot of NASA JPL scientists

at JPL they’re famous for the Mars

rovers and decide this geologists always

tells me that the real interesting

science the science recites are always

at the cliffs but the recurrent Rovers

cannot get there so inspired by that we

want to build a robot that can climb

instructor cliff environment so this is

climber so what it does it has three

legs it probably can’t it’s difficult to

see but has a winch and a cable on the

top I try to figure out the best place

to put its foot and then once it figures

that out in real time it calculates the

force distribution how much force it

needs to exert to the surface so it

doesn’t tip and doesn’t slip once it

stabilizes that lifts a foot and then

with the winch we can climb up these

kind of fun also for search on rescue

applications as well five years ago

actually worked at NASA JPL during the

summer as a faculty fellow and they

already had a tour of a six-legged robot

car a lemur so this is actually based on

that this robot is called Mars multi

appendage robotic system so it’s a

hexapod robot we developed our adaptive

gait planner we actually have a very

interesting payload on there the

students like to have fun and here you

can see that it’s walking over

unstructured rain it’s trying to walk on

the coastal plain match area but

depending on the moisture content

for the size of the grain size of the

sand the foots soil sink each model

changes so it tries to adapt its gait to

successfully cross over these kind of

things it also does some fun stuff as

can imagine we get so many visitors

visiting our labs so when the visitors

come Mars walks up to the computer

starts typing hello my name is Mars

welcome to Ramallah the ROI some

mechanisms lavatory at Virginia Tech

this robot is a ameba robot now we don’t

have enough time to go into technical

details I’ll just show you some of the

experiments so this is all over the

early feasibility experience we store

potential energy to the elastic skin to

make it move or use active tension

course when they can move forward and

backward

it’s called chimera we also have been

working with some scientists and

engineers from UPenn to come up with a

chemically actuated version of this vive

robot we do something to something and

just like magic it moves the ball this

robot is a very recent projects called

Raphael robotic air powered hand with

elastic ligaments there are a lot of

really neat very good robotic hands out

there in the market the problem is

they’re just too expensive tens of

thousands of dollars so for prosthesis

application is probably not too

practical because it’s not affordable we

want to go a tackle this problem in a

very different direction instead of

using electrical motors

electromechanical actuators we’re using

compressed air we developed these novel

actuators for the joints so it’s

compliant you can actually change the

force simply just changing the air

pressure and it can actually crush an

empty soda can it can pick up very

delicate objects like a raw egg or in

this case a light bulb the best part it

took only $200 to make the first

prototype this robot is actually a

family of snake robots that we called

hydras hyper degrees-of-freedom robotic

articulated server time this is a robot

that can climb structures this is a

hydras arm it’s a total degrees of

freedom robotic arm but the cool part is

the user interface the cable over there

that’s the optical fiber and this

student probably the first time using it

but you can articulate it in many

different ways so for example in the

Iraq

you know the war zone there’s roadside

bombs currently send this autonomous

remotely controlled

with our arm it takes really a lot of

time and expensive to train the operator

to operate this complex arm in this case

it’s very intuitive this student

probably first I’m using it very complex

manipulation task picking up objects and

doing manipulation just like that very

intuitive now this robot is currently

our star robot we actually have a fan

club for the robot Darwin dynamic and

performing robot with intelligence as

you know we’re very interested in

humanoid robot human walking so we

decided to build a small human robot

this is at 2 in 2004 at that time this

is something really really revolutionary

this was more of a feasibility study

what kind of motors should use is it

even possible what kind of control

should he do so this does not have any

sensors so it’s an open-loop control and

for those who probably know if you don’t

have any sensors and there’s any

disturbances you know what happens so

based on that success in the following

year we did the proper mechanical design

starting from kinematics and thus Darwin

1 was born in 2005 it stands up it walks

very impressive however still as you can

see it has a cord umbilical cord so

you’re still using external power source

and our external computation so in 2006

now it’s really time to have fun

let’s give it intelligence we give all

the computing power needs 1.5 g yards

pin 2mm chip too far our cameras the

rate gyros accelerometers force torque

sensor on the foot beef in polymer

batteries and now Darwin to is

completely autonomous it is not remote

controlled there’s no feathers

it looks around searches for the ball

looks around searches for the ball and

it tries to play a game of soccer

autonomously artificial intelligence

let’s see how it does this was our very

first trial and so there is actually a

competition called Robo Club I don’t

know how many of you heard about a

Robocop it’s in a international

autonomous robot soccer competition and

the goal of Robocop the officer goal is

by the year 2050 we want to have

full-sized autonomous humanoid robots

play soccer against the

human ruled Cup champions and win it’s a

true offshore goal it’s a very ambitious

goal but we truly believe that we can do

it so this is a last year in China we

were the very first team in the United

States that qualified in the humilate

RoboCup competition this is this year

and this was in Austria you guys see the

action of three against three completely

autonomous Hey yes the robots back and

they play a team play amongst themselves

it’s very impressive really a research

event package in a more exciting in a

competition event what you see over here

this is the beautiful Louis Vuitton Cup

trophy so this for the best humanoid and

you’ll like to bring this for the very

first time to the United States next

year so wish us luck

thank you Darwin also has a lot of other

talents last year it actually conducted

the Roanoke Symphony Orchestra for the

the holiday concert this is the next

generation robot Darwin for much smarter

faster stronger and it’s trying to show

off its ability my macho I’m strong

alright I can also do some Jackie Chan

motion you know martial art movements it

walks away so this is darling for you

again you’ll be able to see in the lobby

we truly believe this is going to be the

very first running human robot in the

United States so it’s stay tuned alright

so I showed you some of our exciting

robotics work so what what’s the secret

of our success where we come up with

these ideas how do we develop these kind

of ideas we have a fully autonomous

vehicle that can drive in the urban

environment we won half a million

dollars in dart bourbon challenge we

also have the rules very first vehicle

that can be driven by the blind called

the blind driver challenge very exciting

and many many other robots project I

want to talk about these are just awards

that won in 2007 fall from robots

competition as those kind of things so

really have five secrets first is where

do we get inspiration where to get this

a spark of imagination this is true

story my personal story at night when I

go to bed three four a.m. in the morning

I lie down close my eyes and I see these

lines and circles and different shapes

floating around and they

assemblé and they form different

mechanisms anyway oh this is cool so

right next to my bed I keep a notebook a

journal with a special pen that has a

light on it LED light because I don’t

want to turn on the light and wake up my

wife

so why I say this i scribble everything

down draw things and I go to bed every

day in the morning the first thing I do

before my first cup of coffee before my

brush my teeth I open my notebook many

times it’s empty sometimes I have

something there if something that

sometimes is junk but most of the time I

can’t even read my handwriting it’s a 4

a.m. in the morning what do you expect

right so I need to decipher what I wrote

but sometimes I see this ingenious idea

in there and I have this irika moment I

directly run to my home office sit in my

computer I type into ideas and sketch

things out and I keep a database of

ideas so when we have this call for

proposals I try to find a match between

my potential ideas and the problem if

there’s a match we write a research

proposal get the research funding in and

that’s how we start our research

programs but just as far imagination is

not good enough how do we develop these

kind of ideas at our lab Romola the

robots of mechanisms laboratory we have

this fantastic brainstorming session so

we gather around we discuss about

problems and social problems and talk

about it but we before we start we set

this Golden Rule the rule is nobody

criticizes anybody’s ideas nobody

criticizes any opinion this is important

because many times students they fear

they feel uncomfortable how other might

think about their opinions and thoughts

so once you do this it is amazing how

the students open up they have this

wacky cool crazy brilliant ideas and the

whole room is just electrified with

creative energy and this is how we

develop our ideas well we’re running out

of time one more thing I want to talk

about is you know just a spark of idea

and developments not good enough there

was a great TED moment I think was Sir

Ken Robinson was it he gave a talk about

how education and school kills

creativity well actually there’s two

sides to the story so there’s only so

much one can do with just ingenious

ideas and creativity and good

engineering intuition if you want to go

beyond the tinkering if you want to go

beyond the hobbyist

products and really tackle the the grand

challenges of Robotics through rigorous

research we need more than that this is

where school comes in Batman fight

against bad guys he has this utility

belt he has this grappling hook has all

difficult of gadgets for us Rhodes’s

engineers on scientists these tools

these are the courses and classes you

take in class math differential

equations I have linear algebra science

physics even nowadays chemistry and

biology as you’ve seen these are all the

tools that we need so the more tools you

have for Batman more effective in

fighting the bad guys for us more tools

to attack these kind of big problems so

education very important also it’s not

about that only about that you also have

to work really really hard so I always

tell my students work smart then work

hard this picture in the back this is a

3 a.m. in the morning I guarantee if you

come to our lab 3 4 a.m. they we have

students working there not because I

tell them to because we’re having too

much fun which leads to the last topic

do not forget to have fun that’s really

a secret of our success we’re having too

much fun I truly believe that highest

product it comes in when you’re having

fun and that’s what we’re doing and

there you go thank you so much

you

所以第一个谈论的机器人叫做

Strider 它代表一个自我兴奋的尝试

彼得动态实验机器人它是一个受自然启发的

具有三条腿的机器人,

但是你见过

自然界中的任何东西,而一个

有三条腿的动物

可能不是这样 为什么我这样做 我称这是一个

受生物启发的机器人 它是如何

工作的,但在此之前让我们看看流行

文化,这样你就知道 HG 威尔斯世界

世界小说 电影,你

在这里看到的是一个非常流行的视频游戏

,这些都是小说 他们描述了

这些外星生物和机器人,它们

有三条腿,恐吓地球,但

我的机器人 Strider 不会像这样移动,

所以这是一个实际的动态模拟

动画,它将向您展示

机器人是如何工作的 它将这个身体翻转 180

度 它摆动它的腿 在

两条腿之间并抓住跌倒,这

就是它走路的方式,但是当你看着我们

人类双足行走时,你

所做的是你并没有真正使用

肌肉来抬起你的腿 喜欢并

像机器人一样走路 你正在

做的是你真的摆动你的腿并

接住球再次站起来摆动你的

腿并摔倒你正在使用你的

内置动力学你身体的物理特性

就像 一个钟摆,我们称之为

被动动态运动的概念,

你所做的是当你

站起来时,势能变为动能,

势能杀死能量

,这是一个不断下降的过程,所以

即使自然界中没有任何东西

看起来像这样,我们真的' 重新

受到生物学的启发,并将

行走的原理应用于这个机器人 因此

是一个受生物学启发的机器人

你在这里看到的 这就是我们

接下来要做的 我们想要折叠腿

并射击它以进行远程运动

,它 展开腿 它着陆时看起来几乎像

星球大战 它吸收

震动并开始行走 你

在这里看到的东西 这个黄色的东西 这

不是死亡射线 这只是为了告诉

你如果你有不同的相机

传感器类型 因为它很高 它有

1.8 米高 你可以看到

障碍物和灌木丛之类的

东西 所以我们有两个原型

第一个版本在后面是 Strider

一个在前面 较小的

Strider - 我们的问题是 与

Strider 一起使用时,身体太重了,

我们播种了

迫击炮,你知道对齐关节和

类似的东西,所以我们决定

合成一个机械机构,这样我

就可以摆脱所有电机,用

一个电机我们可以 协调所有

动作,这是解决问题的一种方法,

而不是使用机电一体化,

所以现在顶部足够轻

,所以它在我们的实验室中行走这是

我们成功的第一步,它

仍然没有完善它咖啡掉下来

所以 我们还有很多工作要做

我想谈的第二个机器人

叫做 impasse 它代表智能

移动平台,带有驱动辐条

系统,所以它是一个轮腿混合机器人,

所以想想 ri mless 车轮或辐条

轮,但辐条单独

进出轮毂,因此它是一种轮

腿混合动力车,我们实际上是在重新发明

轮子让我展示它如何展示它是

如何工作的,所以在这个

视频中我们使用了一种方法 称为

反应性方法,只是简单地使用

脚上的触觉传感器,它试图

在不断变化的地形上行走,然后在柔软的

地形上向下推动

变化,并通过触觉

信息成功越过

这些类型的火车,但当它

遇到 在这种情况下是非常极端的地形,

这个障碍物是

机器人高度的三倍多,

然后它会切换到一种故意模式

,在这种模式下,它使用激光测距仪和

摄像系统来识别两侧的障碍物

,并仔细

计划 辐条和

协调它,这样它就可以显示出

这种非常非常令人印象深刻的机动性

你可能还没有见过

这样的东西这是一个非常高

机动性的机器人 我们开发的 t 叫做

impasse 啊是不是很酷啊 当

你开车时当你驾驶你的车时

你使用一种叫做 akmed 转向的方法

yuuna 前轮像

这样旋转对于你知道的两个小型

轮式机器人他们使用一种叫做的方法

差动搅拌,其中

左右轮

由于许多

不同类型的运动而转向相反的方向以陷入僵局,例如在

这种情况下,即使左轮和右轮

都与旋转相同角速度的单轴相连,

我们只需简单地

改变长度 范围影响

直径,然后你转向左

但右,所以这些

只是我们可以用僵局做的一些巧妙的事情的例子

这个机器人被称为

登山者电缆悬挂跛行智能

匹配行为机器人所以我一直在

和一个 JPL 的许多 NASA JPL 科学家

,他们以火星探测器而闻名,

并认为地质学家总是

告诉我,真正有趣的

科学是科学记录 项目总是

在悬崖边,但经常出现的

流浪者无法到达那里,因此我们

想建造一个可以攀登

教练悬崖环境的机器人,所以这是

攀登者,所以它的作用是它有三

条腿,它可能不能很难

看到 但是顶部有绞盘和电缆

‘不会翻倒也不会滑倒一旦它

稳定了抬起脚然后

用绞盘我们可以爬上

这些有趣的搜索救援

应用程序以及五年前

夏天作为一名教师在美国宇航局喷气推进实验室工作 伙计,他们

已经参观了六足机器人

汽车狐猴所以这实际上是基于

这个机器人被称为火星多

附属机器人系统所以它是一个

六足机器人我们开发了我们的自适应

步态规划器我们实际上有一个非常

有趣的有效载荷在那里,

学生们喜欢玩,在这里你

可以看到它在

非结构化的雨中行走,它试图

在沿海平原比赛区行走,但

取决于水分含量

,沙子的粒度大小,

脚土 每个模型都会

发生变化,因此它会尝试调整其步态以

成功跨越这些

事情它还做了一些有趣的事情,

可以想象我们有这么多访客

访问我们的实验室,所以当访客

来时,火星走到电脑前

开始输入你好 我的名字是火星

欢迎来到拉马拉 投资回报

弗吉尼亚理工大学的一些厕所

这个机器人是变形虫机器人 现在我们

没有足够的时间来讨论技术

细节 我只是给你看一些

实验所以这一切都结束了

早期可行性经验 我们将

势能储存在弹性皮肤上

使其移动或使用主动张力

课程,当它们可以向前和向后移动时

它被称为嵌合体我们也一直在

研究 国王与一些

来自 UPenn 的科学家和工程师一起想出

了这个 vive 机器人的化学驱动版本

我们对某物做一些事情,

就像魔术一样它移动球这个

机器人是一个最近的项目,称为

Raphael 机器人气动手,

那里有弹性韧带 市场上有很多

非常整洁非常好的机器人手

问题是

它们太贵了

几万美元所以对于假肢

应用可能不太

实用因为它负担不起我们

想要解决这个问题 在一个

非常不同的方向上,而不是

使用电动机

机电致动器 我们使用

压缩空气 我们为关节开发了这些新颖的

致动器,因此它是

合规的,您实际上可以改变

力,只需改变

气压,它实际上可以压碎一个

空的汽水罐 它可以拾取非常

精致的物体,例如生鸡蛋,或者在

这种情况下是灯泡,最好的部分

只花了 200 美元 为了制作第一个

原型,这个机器人实际上是一个

蛇形机器人家族,我们称之为

hydras 超自由度机器人

铰接服务器时间 这是一个

可以攀爬结构的机器人 这是一个

hydras 手臂它是一个全

自由度机器人手臂但是 最酷的部分

是用户界面 那边的电缆

是光纤,这个

学生可能是第一次使用它,

但你可以用许多

不同的方式来表达它,例如在

伊拉克,

你知道战区现在有路边

炸弹发送这个

用我们的手臂进行自主远程控制训练操作员操作这个复杂的手臂真的需要很多

时间和昂贵的费用

在这种情况下

它非常直观这个学生

可能首先我正在使用它非常复杂的

操作任务拾取物体并

进行操作只是 就像这样非常

直观,现在这个机器人目前是

我们的明星机器人,我们实际上有一个

机器人粉丝俱乐部达尔文动态和

表演机器人 t 具有智能,如

你所知,我们对

人形机器人人类行走非常感兴趣,所以我们

决定制造一个小型人类

机器人,当时是 2004 年的 2

电机应该使用是否

有可能他应该做什么样的控制

,所以它没有任何

传感器,所以它是一个开环控制,

对于那些可能知道你是否

没有任何传感器并且有任何

干扰的人,你知道会发生什么 因此,

基于第二年的成功,

我们从运动学开始进行了适当的机械设计

,因此 Darwin

1 诞生于 2005 年,它站起来,走路

非常令人印象深刻,但是你可以

看到它有一根脐带,所以

你仍然 使用外部电源

和我们的外部计算,所以在 2006 年

现在是时候玩得开心了,

让我们给它智能,我们给所有

的计算能力需要 1.5 g 码

pin 2mm 芯片太远了我们的相机 th e

速率陀螺仪加速度计

在聚合物电池中的脚牛肉上施加扭矩传感器

,现在达尔文

完全自主它不是

遥控没有羽毛

它环顾四周寻找球

环顾四周寻找球

并尝试玩游戏 足球

自主人工智能

让我们看看它是怎么做的这是我们的

第一次试验所以实际上有一个

叫做机器人俱乐部的比赛我不

知道你们中有多少人听说过

机器人足球比赛它是国际

自主机器人足球比赛

的目标 Robocop 官员的目标是

到 2050 年,我们希望拥有

全尺寸的自主人形机器人

人类统治的杯赛冠军踢足球并赢得胜利 这是一个

真正的离岸目标 这是一个非常雄心勃勃的

目标,但我们真的相信我们可以

做到这一点 是在中国的最后一年,我们

是美国第一支在

羞辱性的 RoboCup 比赛中获得资格的队伍,

这是今年

,这是我 在奥地利,你们看到

了三对三完全

自主的动作嘿,是的,机器人回来了,

他们之间进行了团队合作

漂亮的路易威登杯

奖杯,所以这是最好的人形机器人,

你想

明年第一次把它带到美国

,祝我们好运,

谢谢达尔文去年也有很多其他

人才,它实际上进行

假日音乐会的罗阿诺克交响乐团这是

下一代机器人达尔文,它更聪明

更快更强,它试图

炫耀它的能力我的男子气概我很

强壮我也可以做一些成龙

动作你知道它

走路的武术动作 离开所以这又是你的

宝贝 敬请期待,

所以我向您展示了我们一些令人兴奋的

机器人技术工作

我们成功的秘诀是什么我们提出了

这些想法我们如何开发

这些想法我们拥有

一辆可以在城市中驾驶的全自动汽车

环境 我们在 dart bourbon 挑战赛中赢得了 50 万

美元 我们

也有规则 第

一辆可以由盲人驾驶的车辆

称为盲人司机挑战赛 非常令人兴奋

,还有许多其他机器人项目我

想谈谈这些

只是赢得的奖项 2007 年从机器人比赛中摔下来,

因为这类事情

真的有五个秘密首先是

我们从哪里获得灵感从哪里获得这个

想象力的火花这是

我的个人故事我晚上

三四点睡觉时的故事 早上

我躺下闭上眼睛,我看到这些

线条和圆圈以及不同的形状

漂浮在周围,它们

组合在一起,无论如何它们形成不同的

机制哦,这很酷,所以

就在下一个 o 我的床 我有一个笔记本 一个

带有特殊笔的日记 上面有

灯 LED 灯 因为我

不想打开灯唤醒我的

妻子

所以为什么我这么说 我把所有的东西都写

下来 画东西

每天早上睡觉 我

在第一杯咖啡之前做的第一件事

刷牙之前 我打开我的笔记本很多

次 它是空的 有时我有

一些东西 如果

有时是垃圾但大多数时候我

可以 甚至没有看我的笔迹,

现在是凌晨 4 点,你期望什么是

对的,所以我需要破译我写的东西,

但有时我在那里看到这个巧妙的想法

,我有这个 irika 的时刻,我

直接跑到我的家庭办公室坐在 我的

电脑 我输入想法并勾勒

出来,我保留一个想法数据库,

所以当我们收到提案征集时,

我会尝试在

我的潜在想法和问题

之间找到匹配

项 资助

,就是这样 我们开始了我们的研究

计划,但到目前为止,想象力还

不够好,我们如何

在我们的实验室开发这些想法 Romola

机械机器人实验室 我们有

这个奇妙的头脑风暴会议,所以

我们聚在一起讨论

问题和社会问题并进行交谈

关于它,但我们在开始之前,我们制定了

这条黄金法则,规则是没有人

批评任何人的想法,没有人

批评任何意见这很重要,

因为很多时候学生他们担心

他们会感到不舒服,其他人会如何

看待他们的意见和想法,

所以一旦你这样做了 令人惊讶的是

,学生们如何开放他们有这些

古怪酷炫的疯狂绝妙想法,

整个房间都充满了

创造力,这就是我们如何

很好地发展我们的想法我们已经没有

时间了我想谈的另一件事

是 你知道只是想法的火花

和发展不够好

有一个很棒的 TED 时刻我认为是

肯·罗宾逊爵士是不是他发表了演讲

关于教育和学校如何

很好地扼杀创造力实际上有两个

方面的故事所以

只有巧妙的

想法和创造力以及良好的

工程直觉可以做很多事情如果你想

超越修补如果你想

超越爱好者

产品 并

通过严格的研究真正应对机器人技术的巨大挑战,

我们需要的不仅仅是这

就是蝙蝠侠与坏人战斗的学校

他有这个实用

腰带他有这个抓钩有我们所有

困难的小工具罗德斯的

工程师对科学家们这些 工具

这些是你在课堂上学习的课程和课程

数学

微分方程我有线性代数科学

物理学,即使在今天

你已经看到化学和生物学这些都是

我们需要的工具,所以

你为蝙蝠侠提供的工具越多,战斗就越有效

坏人对我们来说有更多的工具

来解决这些大问题,所以

教育非常重要,也不是

关于 仅此而已,您还必须

非常努力地工作,所以我总是

告诉我的学生要聪明地工作,然后再努力地工作

后面的这张照片 这

是凌晨 3 点 我保证如果您

来我们的实验室,凌晨 3 点 4 点他们就有

在那里工作的学生不是因为我

告诉他们这样做是因为我们

玩得太开心了这导致了最后一个主题

不要忘记玩得开心这真的

是我们成功的秘诀我们

玩得很开心我真的相信最高的

产品它 当你玩得开心时进来

,这就是我们正在做的事情,

你去那里,非常感谢你