The artificial muscles that will power robots of the future Christoph Keplinger

Transcriber: Joseph Geni
Reviewer: Joanna Pietrulewicz

In 2015, 25 teams from around the world

competed to build robots
for disaster response

that could perform a number of tasks,

such as using a power tool,

working on uneven terrain

and driving a car.

That all sounds impressive, and it is,

but look at the body
of the winning robot, HUBO.

Here, HUBO is trying to get out of a car,

and keep in mind,

the video is sped up three times.

(Laughter)

HUBO, from team KAIST out of Korea,
is a state-of-the-art robot

with impressive capabilities,

but this body doesn’t look
all that different

from robots we’ve seen a few decades ago.

If you look at the other robots
in the competition,

their movements also still look,
well, very robotic.

Their bodies are complex
mechanical structures

using rigid materials

such as metal and traditional
rigid electric motors.

They certainly weren’t designed

to be low-cost, safe near people

and adaptable to unpredictable challenges.

We’ve made good progress
with the brains of robots,

but their bodies are still primitive.

This is my daughter Nadia.

She’s only five years old

and she can get out of the car
way faster than HUBO.

(Laughter)

She can also swing around
on monkey bars with ease,

much better than any current
human-like robot could do.

In contrast to HUBO,

the human body makes extensive use
of soft and deformable materials

such as muscle and skin.

We need a new generation of robot bodies

that is inspired by the elegance,
efficiency and by the soft materials

of the designs found in nature.

And indeed, this has become
the key idea of a new field of research

called soft robotics.

My research group
and collaborators around the world

are using soft components
inspired by muscle and skin

to build robots with agility and dexterity

that comes closer and closer

to the astonishing capabilities
of the organisms found in nature.

I’ve always been particularly inspired
by biological muscle.

Now, that’s not surprising.

I’m also Austrian, and I know that I sound
a bit like Arnie, the Terminator.

(Laughter)

Biological muscle
is a true masterpiece of evolution.

It can heal after damage

and it’s tightly integrated
with sensory neurons

for feedback on motion
and the environment.

It can contract fast enough
to power the high-speed wings

of a hummingbird;

it can grow strong enough
to move an elephant;

and it’s adaptable enough
to be used in the extremely versatile arms

of an octopus,

an animal that can squeeze
its entire body through tiny holes.

Actuators are for robots
what muscles are for animals:

key components of the body

that enable movement
and interaction with the world.

So if we could build soft actuators,

or artificial muscles,

that are as versatile, adaptable

and could have the same performance
as the real thing,

we could build almost any type of robot

for almost any type of use.

Not surprisingly,
people have tried for many decades

to replicate the astonishing
capabilities of muscle,

but it’s been really hard.

About 10 years ago,

when I did my PhD back in Austria,

my colleagues and I rediscovered

what is likely one of the very first
publications on artificial muscle,

published in 1880.

“On the shape and volume changes
of dielectric bodies

caused by electricity,”

published by German physicist
Wilhelm Röntgen.

Most of you know him
as the discoverer of the X-ray.

Following his instructions,
we used a pair of needles.

We connected it to a high-voltage source,

and we placed it near
a transparent piece of rubber

that was prestretched
onto a plastic frame.

When we switched on the voltage,

the rubber deformed,

and just like our biceps flexes our arm,

the rubber flexed the plastic frame.

It looks like magic.

The needles don’t even touch the rubber.

Now, having two such needles
is not a practical way

of operating artificial muscles,

but this amazing experiment
got me hooked on the topic.

I wanted to create new ways
to build artificial muscles

that would work well
for real-world applications.

For the next years, I worked
on a number of different technologies

that all showed promise,

but they all had remaining challenges
that are hard to overcome.

In 2015,

when I started my own lab at CU Boulder,

I wanted to try an entirely new idea.

I wanted to combine
the high speed and efficiency

of electrically driven actuators

with the versatility
of soft, fluidic actuators.

Therefore, I thought,

maybe I can try using
really old science in a new way.

The diagram you see here

shows an effect called Maxwell stress.

When you take two metal plates

and place them in a container
filled with oil,

and then switch on a voltage,

the Maxwell stress forces the oil
up in between the two plates,

and that’s what you see here.

So the key idea was,

can we use this effect to push around oil

contained in soft stretchy structures?

And indeed, this worked surprisingly well,

quite honestly,
much better than I expected.

Together with my
outstanding team of students,

we used this idea as a starting point

to develop a new technology
called HASEL artificial muscles.

HASELs are gentle enough
to pick up a raspberry

without damaging it.

They can expand and contract
like real muscle.

And they can be operated
faster than the real thing.

They can also be scaled up
to deliver large forces.

Here you see them lifting
a gallon filled with water.

They can be used to drive a robotic arm,

and they can even
self-sense their position.

HASELs can be used
for very precise movement,

but they can also deliver
very fluidic, muscle-like movement

and bursts of power
to shoot up a ball into the air.

When submerged in oil,

HASEL artificial muscles
can be made invisible.

So how do HASEL artificial muscles work?

You might be surprised.

They’re based on very inexpensive,
easily available materials.

You can even try, and I recommend it,

the main principle at home.

Take a few Ziploc bags
and fill them with olive oil.

Try to push out air bubbles
as much as you can.

Now take a glass plate
and place it on one side of the bag.

When you press down,
you see the bag contract.

Now the amount of contraction
is easy to control.

When you take a small weight,
you get a small contraction.

With a medium weight,
we get a medium contraction.

And with a large weight,
you get a large contraction.

Now for HASELs, the only change
is to replace the force of your hand

or the weight with an electrical force.

HASEL stands for “hydraulically amplified
self-healing electrostatic actuators.”

Here you see a geometry
called Peano-HASEL actuators,

one of many possible designs.

Again, you take a flexible polymer
such as our Ziploc bag,

you fill it with an insulating liquid,
such as olive oil,

and now, instead of the glass plate,

you place an electrical conductor
on one side of the pouch.

To create something
that looks more like a muscle fiber,

you can connect a few pouches together

and attached a weight on one side.

Next, we apply voltage.

Now, the electric field
starts acting on the liquid.

It displaces the liquid,

and it forces the muscle to contract.

Here you see a completed
Peano-HASEL actuator

and how it expands and contracts
when voltage is applied.

Viewed from the side,

you can really see those pouches
take a more cylindrical shape,

such as we saw with the Ziploc bags.

We can also place a few
such muscle fibers next to each other

to create something that looks
even more like a muscle

that also contracts and expands
in cross section.

These HASELs here are lifting a weight
that’s about 200 times heavier

than their own weight.

Here you see one of our newest designs,
called quadrant donut HASELs

and how they expand and contract.

They can be operated incredibly fast,
reaching superhuman speeds.

They are even powerful enough
to jump off the ground.

(Laughter)

Overall, HASELs show promise
to become the first technology

that matches or exceeds the performance
of biological muscle

while being compatible
with large-scale manufacturing.

This is also a very young technology.
We are just getting started.

We have many ideas how to
drastically improve performance,

using new materials and new designs
to reach a level of performance

beyond biological muscle and also beyond
traditional rigid electric motors.

Moving towards more complex designs
of HASEL for bio-inspired robotics,

here you see our artificial scorpion

that can use its tail to hunt prey,

in this case, a rubber balloon.

(Laughter)

Going back to our initial inspiration,

the versatility of octopus arms
and elephant trunks,

we are now able to build
soft continuum actuators

that come closer and closer
to the capabilities of the real thing.

I am most excited
about the practical applications

of HASEL artificial muscles.

They’ll enable soft robotic devices

that can improve the quality of life.

Soft robotics will enable a new generation
of more lifelike prosthetics

for people who have lost
parts of their bodies.

Here you see some HASELs in my lab,

early testing,
driving a prosthetic finger.

One day, we may even merge
our bodies with robotic parts.

I know that sounds very scary at first.

But when I think about my grandparents

and the way they become
more dependent on others

to perform simple everyday tasks
such as using the restroom alone,

they often feel like
they’re becoming a burden.

With soft robotics, we will be able
to enhance and restore

agility and dexterity,

and thereby help older people
maintain autonomy

for longer parts of their lives.

Maybe we can call that
“robotics for antiaging”

or even a next stage of human evolution.

Unlike their traditional
rigid counterparts,

soft life-like robots will safely operate
near people and help us at home.

Soft robotics is a very young field.
We’re just getting started.

I hope that many young people
from many different backgrounds

join us on this exciting journey

and help shape the future of robotics

by introducing new concepts
inspired by nature.

If we do this right,

we can improve the quality of life

for all of us.

Thank you.

(Applause)

抄写员:Joseph
Geni 审稿人:Joanna Pietrulewicz

2015 年,来自世界各地的 25 支团队

竞相制造
用于灾难响应的机器人,

这些机器人可以执行多项任务,

例如使用电动工具、

在不平坦的地形上工作

和驾驶汽车。

这一切听起来令人印象深刻,确实如此,

但看看
获胜机器人 HUBO 的身体。

在这里,HUBO 正在尝试下车

,请记住

,视频加速了三倍。

(笑声

) 来自韩国的 KAIST 团队的 HUBO
是最先进的机器人,

具有令人印象深刻的能力,

但这个身体看起来

与我们几十年前看到的机器人并没有太大的不同。

如果你看看比赛中的其他机器人

他们的动作也看起来,
嗯,非常机器人。

他们的身体是复杂的
机械结构,

使用刚性材料

,如金属和传统的
刚性电动机。

它们当然不是

为低成本、靠近人的安全

和适应不可预测的挑战而设计的。

我们在机器人的大脑方面取得了很好的进展

但它们的身体仍然很原始。

这是我的女儿娜迪亚。

她才五岁

,下车
的速度比HUBO还快。

(笑声)

她还可以
轻松地在单杠上荡秋千,

比目前任何
类人机器人都好。

与 HUBO 相比

,人体大量
使用肌肉和皮肤等柔软且可变形的材料

我们需要新一代的机器人机体

,其灵感来自优雅、
效率和

自然界中发现的设计的柔软材料。

事实上,这已成为
一个名为软机器人的新研究领域的关键思想

我的研究小组
和世界各地的合作者

正在使用
受肌肉和皮肤启发的软组件

来制造敏捷性和灵巧

性越来越接近

自然界中发现的生物体的惊人能力的机器人。

我一直特别
受到生物肌肉的启发。

现在,这并不奇怪。

我也是奥地利人,我知道我听起来
有点像终结者阿尼。

(笑声)

生物肌肉
是进化的真正杰作。

它可以在损伤后愈合,


与感觉神经元紧密结合,

以反馈运动
和环境。

它的收缩速度足以
为蜂鸟的高速翅膀提供动力

它可以长得
足以移动一头大象;

它的适应性
足以用于章鱼的多功能手臂

,章鱼可以
通过小孔挤压整个身体。

致动器之于
机器人就像肌肉之于动物:

身体的关键组成部分

,使运动
和与世界互动。

因此,如果我们能够制造

出多功能、适应性强

且性能
与真实物体相同的软致动器或人造肌肉,

我们就可以制造几乎任何类型的机器人,

用于几乎任何类型的用途。

毫不奇怪,
几十年来人们一直在尝试

复制肌肉的惊人
能力,

但这真的很难。

大约 10 年前,

当我在奥地利攻读博士学位时,

我和我的同事们重新发现

了 1880 年发表的可能是最早的
关于人工肌肉的出版物

之一。

“关于由电引起的介电体的形状和体积变化

, "

由德国物理学家
威廉·伦琴 (Wilhelm Röntgen) 发表。

你们大多数人都知道他
是 X 射线的发现者。

按照他的指示,
我们用了一对针。

我们将它连接到高压电源,

然后将它放在
一块透明橡胶附近,该橡胶

预拉伸
到塑料框架上。

当我们打开电压时

,橡胶变形

,就像我们的二头肌弯曲我们的手臂一样

,橡胶弯曲塑料框架。

它看起来像魔术。

针甚至不接触橡胶。

现在,拥有两根这样的
针头并不是一种

操作人造肌肉的实用方法,

但这个惊人的实验
让我迷上了这个话题。

我想创造新的方法

构建适用
于实际应用的人造肌肉。

在接下来的几年里,我
研究了许多不同的技术

,这些技术都显示出了希望,


它们都有难以克服的剩余挑战。

2015 年,

当我在 CU Boulder 建立自己的实验室时,

我想尝试一个全新的想法。

我想将

电动执行器的高速和高效


柔软的流体执行器的多功能性结合起来。

因此,我想,

也许我可以尝试
以一种新的方式使用真正古老的科学。

您在此处看到的图表

显示了一种称为麦克斯韦应力的效应。

当您将两块金属

板放入装满油的容器中

然后接通电压时

,麦克斯韦应力会迫使
油进入两块板之间

,这就是您在这里看到的。

所以关键的想法是,

我们可以利用这种效果来推动

软弹性结构中包含的油吗?

确实,这出人意料地好,

老实说,
比我预期的要好得多。

与我
优秀的学生团队一起,

我们以这个想法为出发点

,开发了一项
名为 HASEL 人造肌肉的新技术。

HASEL 足够温和,
可以在不损坏树莓的情况下捡起树莓

它们可以
像真正的肌肉一样膨胀和收缩。

并且它们可以
比真实的东西更快地操作。

它们也可以扩大规模
以提供强大的力量。

在这里,您看到他们举起
装满水的加仑。

它们可以用来驱动机械臂,

甚至可以
自我感知自己的位置。

HASEL 可
用于非常精确的运动,

但它们也可以提供
非常流畅的、类似肌肉的运动

和爆发力
,将球射向空中。

当浸入油中时,

HASEL 人造肌肉
可以变得隐形。

那么HASEL人造肌肉是如何工作的呢?

你可能会感到惊讶。

它们基于非常便宜、
容易获得的材料。

你甚至可以尝试,我推荐它,

在家里的主要原则。

拿几个 Ziploc 袋子
,在里面装满橄榄油。

尽量挤出
气泡。

现在取一个玻璃板
并将其放在袋子的一侧。

当您按下时,
您会看到袋子合同。

现在收缩量
很容易控制。

当你拿一个小的重量时,
你会得到一个小的收缩。

中等重量,
我们得到中等收缩。

并且重量很大,
你会得到很大的收缩。

现在对于 HASEL,唯一的变化
是用电力代替你的手的

力量或重量。

HASEL 代表“液压放大
自愈式静电执行器”。

在这里,您会看到一种
称为 Peano-HASEL 执行器的几何结构,

它是许多可能的设计之一。

再一次,你拿一个柔性聚合物,
比如我们的 Ziploc 袋,

用绝缘液体(
比如橄榄油)填充它

,现在,


在袋子的一侧放置一个导电体,而不是玻璃板。

要创建
看起来更像肌肉纤维的东西,

您可以将几个小袋连接在一起

并在一侧附加一个重物。

接下来,我们施加电压。

现在,电场
开始作用于液体。

它置换液体,

并迫使肌肉收缩。

在这里,您可以看到一个完整的
Peano-HASEL 执行器

,以及它
在施加电压时如何膨胀和收缩。

从侧面看,

你真的可以看到那些
袋子的形状更像圆柱形,

就像我们看到的 Ziploc 袋子一样。

我们还可以将一些
这样的肌肉纤维彼此相邻放置,

以创造出
看起来更像肌肉

的东西,它的横截面也会收缩和扩张

这里的这些 HASEL 举起的
重量大约是

它们自身重量的 200 倍。

在这里,您可以看到我们最新的设计之一,
称为象限甜甜圈 HASEL

,以及它们如何扩展和收缩。

它们的操作速度非常快,
达到了超人的速度。

它们甚至强大
到可以跳下地面。

(笑声)

总体而言,HASEL
有望成为第

一个匹配或超过
生物肌肉性能

同时
兼容大规模制造的技术。

这也是一项非常年轻的技术。
我们才刚刚开始。

我们有很多想法如何
大幅提高性能,

使用新材料和新设计
达到

超越生物肌肉和
传统刚性电动机的性能水平。

朝着更复杂
的仿生机器人 HASEL 设计发展,

在这里您可以看到我们的人造蝎子

,它可以使用它的尾巴来捕食猎物,

在这种情况下,是一个橡胶气球。

(笑声)

回到我们最初的灵感,

章鱼手臂和象鼻的多功能性

我们现在能够制造

出越来越
接近真实物体功能的软连续体致动器。

对 HASEL 人造肌肉的实际应用感到最兴奋。

他们将启用

可以改善生活质量的软机器人设备。

软机器人将为失去部分身体的人提供
新一代更逼真的假肢

在这里,您可以看到我实验室中的一些 HASEL,

早期测试,
驱动假手指。

有一天,我们甚至可以将
我们的身体与机器人部件融合在一起。

我知道一开始这听起来很可怕。

但是当我想到我的祖父母

以及他们
越来越依赖他人

来执行简单的日常任务(
例如独自上厕所)时,

他们常常觉得
自己正在成为一种负担。

借助软机器人,我们将
能够增强和恢复

敏捷性和灵巧性

,从而帮助老年人

在更长的生命中保持自主权。

也许我们可以称其
为“抗衰老机器人”

,甚至是人类进化的下一个阶段。

与传统的
刚性机器人不同,

柔软的栩栩如生的机器人将在人附近安全地运行,
并在家里为我们提供帮助。

软机器人是一个非常年轻的领域。
我们才刚刚开始。

我希望
许多来自不同背景的年轻人

加入我们这一激动人心的旅程,

通过引入
受自然启发的新概念来帮助塑造机器人技术的未来。

如果我们做对了,

我们就可以提高

我们所有人的生活质量。

谢谢你。

(掌声)