Tiny robots with giant potential Paul McEuen and Marc Miskin

Translator: Joseph Geni
Reviewer: Camille Martínez

Mark Miskin: This is a rotifer.

It’s a microorganism
about a hair’s width in size.

They live everywhere on earth –
saltwater, freshwater, everywhere –

and this one is out looking for food.

I remember the first time
I saw this thing,

I was like eight years old
and it completely blew me away.

I mean, here is this
incredible little creature,

it’s hunting, swimming,

going about its life,

but its whole universe fits
within a drop of pond water.

Paul McEuen: So this little rotifer
shows us something really amazing.

It says that you can build a machine

that is functional, complex, smart,

but all in a tiny little package,

one so small that
it’s impossible to see it.

Now, the engineer in me
is just blown away by this thing,

that anyone could make such a creature.

But right behind that wonder,
I have to admit, is a bit of envy.

I mean, nature can do it. Why can’t we?

Why can’t we build tiny robots?

Well, I’m not the only one
to have this idea.

In fact, in the last, oh, few years,

researchers around the world
have taken up the task

of trying to build robots

that are so small that they can’t be seen.

And what we’re going
to tell you about today

is an effort at Cornell University

and now at the University of Pennsylvania

to try to build tiny robots.

OK, so that’s the goal.

But how do we do it?

How do we go about building tiny robots?

Well, Pablo Picasso, of all people,
gives us our first clue.

Picasso said –

[“Good artists copy,
great artists steal."]

(Laughter)

“Good artists copy. Great artists steal.”

(Laughter)

OK. But steal from what?

Well, believe it or not,

most of the technology you need
to build a tiny robot already exists.

The semiconductor industry
has been getting better and better

at making tinier and tinier devices,

so at this point they could put
something like a million transistors

into the size of a package
that is occupied by, say,

a single-celled paramecium.

And it’s not just electronics.

They can also build little sensors,

LEDs,

whole communication packages
that are too small to be seen.

So that’s what we’re going to do.

We’re going to steal that technology.

Here’s a robot.

(Laughter)

Robot’s got two parts, as it turns out.

It’s got a head, and it’s got legs.

[Steal these: Brains]

(Laughter)

We’re going to call this a legless robot,

which may sound exotic,

but they’re pretty cool all by themselves.

In fact, most of you have
a legless robot with you right now.

Your smartphone is the world’s
most successful legless robot.

In just 15 years, it has
taken over the entire planet.

And why not?

It’s such a beautiful little machine.

It’s incredibly intelligent,

it’s got great communication skills,

and it’s all in a package
that you can hold in your hand.

So we would like to be able
to build something like this,

only down at the cellular scale,

the size of a paramecium.

And here it is.

This is our cell-sized smartphone.

It even kind of looks like a smartphone,

only it’s about 10,000 times smaller.

We call it an OWIC.

[Optical Wireless Integrated Circuits]

OK, we’re not advertisers, all right?

(Laughter)

But it’s pretty cool all by itself.

In fact, this OWIC has a number of parts.

So up near the top,

there are these cool little solar cells
that you shine light on the device

and it wakes up a little circuit
that’s there in the middle.

And that circuit can drive
a little tiny LED

that can blink at you and allows
the OWIC to communicate with you.

So unlike your cell phone,

the OWIC communicates with light,

sort of like a tiny firefly.

Now, one thing that’s pretty cool
about these OWICs

is we don’t make them one at a time,

soldering all the pieces together.

We make them in massive parallel.

For example, about a million
of these OWICs

can fit on a single four-inch wafer.

And just like your phone
has different apps,

you can have different kinds of OWICs.

There can be ones that, say,
measure voltage,

some that measure temperature,

or just have a little light that can blink
at you to tell you that it’s there.

So that’s pretty cool,
these tiny little devices.

And I’d like to tell you about them
in a little more detail.

But first, I have to tell you
about something else.

I’m going to tell you a few things
about pennies that you might not know.

So this one is a little bit older penny.

It’s got a picture of
the Lincoln Memorial on the back.

But the first thing you might not know,

that if you zoom in, you’ll find
in the center of this thing

you can actually see Abraham Lincoln,

just like in the real Lincoln Memorial
not so far from here.

What I’m sure you don’t know,

that if you zoom in even further –

(Laughter)

you’ll see that there’s actually
an OWIC on Abe Lincoln’s chest.

(Laughter)

But the cool thing is,

you could stare at this all day long
and you would never see it.

It’s invisible to the naked eye.

These OWICs are so small,

and we make them in such parallel fashion,

that each OWIC costs actually
less than a penny.

In fact, the most expensive thing
in this demo is that little sticker

that says “OWIC.”

(Laughter)

That cost about eight cents.

(Laughter)

Now, we’re very excited about
these things for all sorts of reasons.

For example, we can use them
as little tiny secure smart tags,

more identifying than a fingerprint.

We’re actually putting them inside
of other medical instruments

to give other information,

and even starting to think about
putting them in the brain

to listen to neurons one at a time.

In fact, there’s only one thing
wrong with these OWICs:

it’s not a robot.

It’s just a head.

(Laughter)

And I think we’ll all agree

that half a robot
really isn’t a robot at all.

Without the legs,
we’ve got basically nothing.

MM: OK, so you need the legs, too,
if you want to build a robot.

Now, here it turns out
you can’t just steal

some preexisting technology.

If you want legs for your tiny robot,
you need actuators, parts that move.

They have to satisfy
a lot of different requirements.

They need to be low voltage.

They need to be low power, too.

But most importantly,
they have to be small.

If you want to build a cell-sized robot,
you need cell-sized legs.

Now, nobody knows how to build that.

There was no preexisting technology
that meets all of those demands.

To make our legs for our tiny robots,

we had to make something new.

So here’s what we built.

This is one of our actuators,
and I’m applying a voltage to it.

When I do, you can see
the actuator respond by curling up.

Now, this might not look like much,

but if we were to put a red blood cell
up on the screen, it’d be about that big,

so these are unbelievably tiny curls.

They’re unbelievably small,

and yet this device can just bend
and unbend, no problem, nothing breaks.

So how do we do it?

Well, the actuator is made
from a layer of platinum

just a dozen atoms or so thick.

Now it turns out, if you take
platinum and put it in water

and apply a voltage to it,

atoms from the water
will attach or remove themselves

from the surface of the platinum,

depending on how much voltage you use.

This creates a force,

and you can use that force
for voltage-controlled actuation.

The key here was to make
everything ultrathin.

Then your actuator is flexible enough

to bend to these small
sizes without breaking,

and it can use the forces that come about

from just attaching or removing
a single layer of atoms.

Now, we don’t have to build these
one at a time, either.

In fact, just like the OWICs,

we can build them massively
in parallel as well.

So here’s a couple thousand
or so actuators,

and all I’m doing is applying a voltage,

and they all wave,

looking like nothing more than the legs
of a future robot army.

(Laughter)

So now we’ve got the brains
and we’ve got the brawn.

We’ve got the smarts and the actuators.

The OWICs are the brains.

They give us sensors,
they give us power supplies,

and they give us a two-way
communication system via light.

The platinum layers are the muscle.

They’re what’s going
to move the robot around.

Now we can take those two pieces,
put them together

and start to build our tiny, tiny robots.

The first thing we wanted to build
was something really simple.

This robot walks around
under user control.

In the middle are some solar cells
and some wiring attached to it.

That’s the OWIC.

They’re connected to a set of legs
which have a platinum layer

and these rigid panels that we put on top

that tell the legs how to fold up,
which shape they should take.

The idea is that by shooting a laser
at the different solar cells,

you can choose which leg you want to move

and make the robot walk around.

Now, of course, we don’t build those
one at a time, either.

We build them massively
in parallel as well.

We can build something like one million
robots on a single four-inch wafer.

So, for example, this image
on the left, this is a chip,

and this chip has something like
10,000 robots on it.

Now, in our world, the macro world,

this thing looks like it might be
a new microprocessor or something.

But if you take that chip
and you put it under a microscope,

what you’re going to see are
thousands and thousands of tiny robots.

Now, these robots are still stuck down.

They’re still attached to the surface
that we built them on.

In order for them to walk around,
we have to release them.

We wanted to show you how we do that live,
how we release the robot army,

but the process involves
highly dangerous chemicals,

like, really nasty stuff,

and we’re like a mile
from the White House right now?

Yeah. They wouldn’t let us do it.

So –

(Laughter)

so we’re going to show you
a movie instead. (Laughs)

What you’re looking at here
are the final stages of robot deployment.

We’re using chemicals

to etch the substrate
out from underneath the robots.

When it dissolves, the robots are free
to fold up into their final shapes.

Now, you can see here,
the yield’s about 90 percent,

so almost every one of those
10,000 robots we build,

that’s a robot that we can
deploy and control later.

And we can take those robots
and we can put them places as well.

So if you look at the movie on the left,
that’s some robots in water.

I’m going to come along with a pipette,

and I can vacuum them all up.

Now when you inject the robots
back out of that pipette,

they’re just fine.

In fact, these robots are so small,

they’re small enough to pass through
the thinnest hypodermic needle

you can buy.

Yeah, so if you wanted to,

you could inject yourself full of robots.

(Laughter)

I think they’re into it.

(Laughter)

On the right is a robot
that we put in some pond water.

I want you to wait for just one second.

Ooop!

You see that? That was no shark.
That was a paramecium.

So that’s the world
that these things live in.

OK, so this is all well and good,

but you might be wondering at this point,

“Well, do they walk?”

Right? That’s what they’re supposed to do.
They better. So let’s find out.

So here’s the robot and here
are its solar cells in the middle.

Those are those little rectangles.

I want you to look at the solar cell
closest to the top of the slide.

See that little white dot?
That’s a laser spot.

Now watch what happens
when we start switching that laser

between different
solar cells on the robot.

Off it goes!

(Applause)

Yeah!

(Applause)

Off goes the robot
marching around the microworld.

Now, one of the things
that’s cool about this movie is:

I’m actually piloting
the robot in this movie.

In fact, for six months, my job was
to shoot lasers at tiny cell-sized robots

to pilot them around the microworld.

This was actually my job.

As far as I could tell, that is
the coolest job in the world.

(Laughter)

It was just the feeling
of total excitement,

like you’re doing the impossible.

It’s a feeling of wonder like that first
time I looked through a microscope

as a kid staring at that rotifer.

Now, I’m a dad, I have a son of my own,
and he’s about three years old.

But one day, he’s going to look
through a microscope like that one.

And I often wonder:

What is he going to see?

Instead of just watching the microworld,

we as humans can now build
technology to shape it,

to interact with it, to engineer it.

In 30 years, when my son is my age,
what will we do with that ability?

Will microrobots live in our bloodstream,

as common as bacteria?

Will they live on our crops
and get rid of pests?

Will they tell us when we have infections,
or will they fight cancer cell by cell?

PM: And one cool part is,

you’re going to be able to participate
in this revolution.

Ten years or so from now,

when you buy your new iPhone 15x Moto
or whatever it’s called –

(Laughter)

it may come with a little jar
with a few thousand tiny robots in it

that you can control
by an app on your cell phone.

So if you want to ride
a paramecium, go for it.

If you want to – I don’t know –
DJ the world’s smallest robot dance party,

make it happen.

(Laughter)

And I, for one, am very excited
about that day coming.

MM: Thank you.

(Applause)

译者:Joseph Geni
审稿人:Camille Martínez

Mark Miskin:这是轮虫。

它是一种
大小与头发一样宽的微生物。

它们生活在地球上的任何地方——
咸水、淡水,到处都是——

而这只正在寻找食物。

我记得我第一次
看到这个东西时,

我就像八岁一样
,它完全把我震撼了。

我的意思是,这是一个
令人难以置信的小生物,

它在打猎、游泳

,过着它的生活,

但它的整个宇宙都
放在一滴池塘水里。

Paul McEuen:所以这条小轮虫
向我们展示了一些非常了不起的东西。

它说你可以建造一

台功能强大、复杂、智能的机器,

但所有这些都在一个很小的包装中,

一个小
到几乎看不见的机器。

现在,
我内心的工程师对这件事

感到震惊,任何人都可以制造这样的生物。

但在这个奇迹的背后,
我不得不承认,有点嫉妒。

我的意思是,大自然可以做到。 为什么我们不能?

为什么我们不能制造微型机器人?

好吧,我不是唯一
一个有这个想法的人。

事实上,在过去,哦,几年里,

世界各地的研究人员
都承担起了

尝试制造

小到看不见的机器人的任务。

今天我们
要告诉你的

是康奈尔大学

和宾夕法尼亚大学

试图制造微型机器人的努力。

好的,这就是目标。

但是我们该怎么做呢?

我们如何着手制造微型机器人?

好吧,在所有人中,毕加索
给了我们第一个线索。

毕加索说——

[“好艺术家抄袭,
伟大艺术家偷窃。”]

(笑声)

“好艺术家抄袭。伟大艺术家偷窃。”

(笑声)

好的。 但是偷什么?

好吧,不管你信不信

,制造微型机器人所需的大部分技术已经存在。

半导体行业

在制造越来越小的设备方面做得越来越好,

所以在这一点上,他们可以将大约
一百万个晶体管

放入一个

单细胞草履虫占据的封装大小。

它不仅仅是电子产品。

他们还可以构建小传感器、

LED,

以及小到看不见的整个通信包。

这就是我们要做的。

我们要窃取这项技术。

这是一个机器人。

(笑声)

机器人有两个部分,事实证明。

它有头,也有腿。

[窃取这些:大脑]

(笑声)

我们将把它称为无腿机器人,

这听起来可能很奇特,

但它们本身就很酷。

事实上,你们中的大多数人现在都有
一个没有腿的机器人。

您的智能手机是世界上
最成功的无腿机器人。

仅用了 15 年,它就
占领了整个地球。

那么为何不?

真是个漂亮的小机器。

它非常聪明,

具有出色的沟通技巧,

而且一切都在
您可以握在手中的包裹中。

所以我们希望
能够建立这样的东西,

只是在细胞规模上,

草履虫的大小。

就在这里。

这是我们的手机大小的智能手机。

它甚至有点像智能手机,

只是体积小了大约 10,000 倍。

我们称之为 OWIC。

[光无线集成电路]

好的,我们不是广告商,好吗?

(笑声)

但它本身就很酷。

事实上,这个 OWIC 有很多部分。

所以在靠近顶部的地方,

有这些很酷的小太阳能电池
,你将光照射在设备上

,它会唤醒中间的一个小电路

该电路可以驱动
一个很小的 LED

,它可以向你闪烁,并
允许 OWIC 与你通信。

因此,与您的手机不同

,OWIC 与光通信,

有点像一只小萤火虫。

现在,这些 OWIC 非常酷的一件事

是我们不会一次制造它们,而是将

所有部件焊接在一起。

我们使它们大规模并行。

例如,大约一百万
个这样的 OWIC

可以安装在一个 4 英寸的晶圆上。

就像您的手机
有不同的应用程序一样,

您可以拥有不同类型的 OWIC。

可以有一些,比如说,
测量电压,

一些测量温度,

或者只是有一个小灯可以
向你闪烁,告诉你它在那里。

所以这很酷,
这些微小的小设备。

我想更详细地告诉你们

但首先,我必须告诉你
一些别的事情。

我要告诉你一些
你可能不知道的关于便士的事情。

所以这个有点老一分钱。

背面有林肯纪念堂的照片。

但是你可能不知道的第一件事

,如果你放大,你会发现
在这个东西的中心

你可以看到亚伯拉罕林肯,

就像在离这里不远的真正的林肯纪念堂一样

我敢肯定你不知道

,如果你再放大一点——

(笑声)

你会发现实际上
在 Abe Lincoln 的胸前有一个 OWIC。

(笑声)

但很酷的是,

你可以整天盯着
它看,你永远也看不到它。

它是肉眼看不见的。

这些 OWIC 非常小

,我们以并行方式制造它们,

以至于每个 OWIC 的成本实际上
不到一美分。

其实这个demo中最贵的就是

那个写着“OWIC”的小贴纸。

(笑声

) 大约花了八美分。

(笑声)

现在,出于各种原因,我们对这些事情感到非常兴奋

例如,我们可以将它们
用作小型安全智能标签,

比指纹更具识别性。

我们实际上是将它们
放入其他医疗仪器中

以提供其他信息,

甚至开始考虑
将它们放入大脑中,

以便一次听一个神经元。

事实上,这些 OWIC 只有一个
问题:

它不是机器人。

这只是一个头。

(笑声)

我想我们都会

同意半个机器人
真的不是机器人。

没有腿,
我们基本上什么都没有。

MM:好的,所以
如果你想建造一个机器人,你也需要腿。

现在,事实证明
你不能只是窃取

一些已有的技术。

如果你想要你的微型机器人的腿,
你需要执行器,即可以移动的部件。

他们必须
满足许多不同的要求。

他们需要低电压。

它们也需要低功耗。

但最重要的是,
它们必须很小。

如果你想建造一个细胞大小的机器人,
你需要细胞大小的腿。

现在,没有人知道如何构建它。

没有
满足所有这些需求的现有技术。

为了给我们的微型机器人制造腿,

我们必须做出一些新的东西。

所以这就是我们构建的。

这是我们的执行器之一
,我正在对其施加电压。

当我这样做时,您可以
看到执行器通过蜷缩来响应。

现在,这可能看起来不多,

但如果我们在屏幕上放一个
红细胞,它就会有那么大,

所以这些是令人难以置信的小卷发。

它们小得令人难以置信

,但这个设备可以弯曲
和伸直,没问题,没有任何损坏。

那么我们该怎么做呢?

好吧,致动器是
由一层

只有十几个原子左右厚的铂制成的。

现在事实证明,如果你将
铂放入水中

并对其施加电压,

水中的原子
会附着或

脱离铂表面,

具体取决于你使用的电压。

这会产生一种力

,您可以使用该力
进行电压控制驱动。

这里的关键是让
一切都变得超薄。

然后,您的执行器足够灵活,

可以弯曲到这些小
尺寸而不会断裂,

并且它可以利用

仅附着或
移除单层原子产生的力。

现在,我们也不必一次构建这些

事实上,就像 OWIC 一样,

我们也可以
大规模并行构建它们。

所以这里有几千
个左右的执行器

,我所做的只是施加电压

,它们都在波动,

看起来只不过
是未来机器人军队的腿。

(笑声)

所以现在我们有了头脑
,也有了肌肉。

我们拥有智能设备和执行器。

OWIC 是大脑。

它们给我们传感器
,给我们电源

,给我们一个
通过光的双向通信系统。

铂层是肌肉。

他们是
要移动机器人的东西。

现在我们可以把这两部分
放在一起

,开始建造我们的微型机器人。

我们想要构建的第一
件事是非常简单的。

这个机器人
在用户控制下四处走动。

中间是一些太阳能电池
和一些连接到它的电线。

这就是OWIC。

它们连接到一组
具有铂金层的腿

和我们放在顶部的这些刚性面板

,告诉腿如何折叠,
它们应该采取哪种形状。

这个想法是,通过
向不同的太阳能电池发射激光,

您可以选择要移动的腿

并让机器人四处走动。

现在,当然,我们也不会一次构建
一个。

我们也
大量并行构建它们。

我们可以
在一个 4 英寸的晶圆上建造类似一百万个机器人。

举个例子,左边这张图
,这是一个芯片

,这个芯片上有
10,000个机器人。

现在,在我们的世界,宏观世界中,

这个东西看起来可能是
一个新的微处理器之类的东西。

但是如果
你把那个芯片放在显微镜下,

你会看到
成千上万的微型机器人。

现在,这些机器人仍然被卡住了。

它们仍然附着在
我们构建它们的表面上。

为了让他们四处走动,
我们必须释放他们。

我们想向你展示我们是如何做到这一点的,
我们是如何释放机器人军队的,

但这个过程涉及
高度危险的化学物质,

比如非常讨厌的东西,

而且我们现在离白宫只有一英里

是的。 他们不让我们这样做。

所以——

(笑声)

所以我们要给你们看
一部电影。 (笑)

你在这里看到的
是机器人部署的最后阶段。

我们正在使用化学品

从机器人下方蚀刻基板。

当它溶解时,机器人可以
自由折叠成最终的形状。

现在,您可以在这里看到
,产量约为 90%,

所以
我们制造的这 10,000 个机器人中的几乎每一个都是

我们以后可以
部署和控制的机器人。

我们可以把这些机器人拿走
,我们也可以把它们放在地方。

所以如果你看左边的电影,
那是水中的一些机器人。

我会带着吸管来

,我可以把它们都吸干净。

现在,当您将
机器人从移液管中重新注入时,

它们就很好了。

事实上,这些机器人非常小,

它们小到可以穿过你能买到
的最细的皮下注射针头

是的,所以如果你愿意,

你可以给自己注入满满的机器人。

(笑声)

我认为他们很喜欢。

(笑声)

右边是一个机器人
,我们把它放在池塘里的水里。

我要你等一秒钟。

哎呀!

你看到了吗? 那不是鲨鱼。
那是草履虫。

所以这
就是这些东西生活的世界。

好吧,这一切都很好,

但你可能会想,

“嗯,他们会走路吗?”

对? 这是他们应该做的。
他们更好。 那么让我们来了解一下。

这是机器人,
中间是太阳能电池。

那些是那些小矩形。

我想让你看看
最靠近幻灯片顶部的太阳能电池。

看到那个小白点了吗?
那是一个激光点。

现在看看
当我们开始

在机器人的不同太阳能电池之间切换激光时会发生什么。

走吧!

(掌声)

对!

(掌声)

机器人
在微世界中行走。

现在,
这部电影最酷的地方之一是:

我实际上是在驾驶
这部电影中的机器人。

事实上,六个月来,我的工作是
向细胞大小的微型机器人发射激光,

以引导它们在微观世界中飞行。

这实际上是我的工作。

据我所知,这
是世界上最酷的工作。

(笑声)

这只是
一种完全兴奋的感觉,

就像你在做不可能的事。

当我还是个孩子的时候,第一次通过显微镜观察那只轮虫时,这种感觉就像是一种奇妙的感觉

现在,我是一位父亲,我有一个自己的儿子
,他大约三岁。

但有一天,他会
通过像那样的显微镜观察。

我经常想知道:

他会看到什么? 作为人类

,我们现在不仅可以观察微观世界,

还可以构建
技术来塑造

它、与之互动、设计它。

30年后,当我儿子到我这个年纪时,
我们将如何利用这种能力?

微型机器人会像细菌一样生活在我们的血液中

吗?

他们会以我们的庄稼为生
并摆脱害虫吗?

他们会在我们感染时告诉我们,
还是会逐个细胞地对抗癌细胞?

PM:一个很酷的部分是,

你将能够
参与这场革命。

大约十年后,

当你购买你的新 iPhone 15x Moto
或任何它的名字时——

(笑声)

它可能会附带一个小罐子
,里面有几千个微型机器人

,你可以
通过手机上的应用程序控制 .

因此,如果您想
骑草履虫,那就去吧。

如果你想——我不知道
——DJ 世界上最小的机器人舞会,

那就去做吧。

(笑声

) 一方面,我
对这一天的到来感到非常兴奋。

MM:谢谢。

(掌声)