Towards the robots of science fiction

[Music]

[Applause]

robots

have long imagined a world where you

could

go out and explore the cosmos remotely

where you could have a system that would

help you restore mobility

restore function in systems that would

enable you to do things like monitor

wildfires and address them instantly

right

there’s a long history of our

imagination running wild with what

robots could do

right this is documented in science

fiction going back to the 50s and before

by greats like asthma then heinlein and

clark

and the idea was robots could be there

to be better versions of ourselves to

make our lives better

where are we today with robotic systems

well there’s been incredible

gains that have been made in the last

five or ten years we have

robots from companies like boston

dynamics that are running outside that

are doing backflips

this is really incredible this is

something that i couldn’t have imagined

20 years ago right and you’ve all seen

these videos probably really incredible

stuff

not only that but we have robots that

are going to start to explore the cosmos

we already have rovers on mars

we have a humanoid robot on the space

station going above our heads

and we’re going to be sending a

helicopter to mars in 2020

so we’re starting to take robots and

extend ourselves through them

finally we’re starting to see robots

helping people live better lives

so this is by rewalk it’s a lower body

exoskeleton for paraplegics

this is a paraplegic walking in the

device with the aid of some crutches

and again this is what we want to do we

want to use this power this technology

in a positive way to help people live

better lives but there’s one important

point here that all these videos don’t

show

so what’s the secret below at all well

first

in the context of this exoskeleton

there’s a hint

the hint is that it requires crutches

why does it require crutches it because

all the videos you just saw

however amazing they are were the one

time it worked

after a thousand times of trying to make

it work

so boston dynamics i give them a ton of

credit because they show

outtakes of when it didn’t work on their

robots

so it gets worse this is a bad day it’s

a bad robot day

so we also have the backflip which was

amazing and here’s some outtakes from

the backflip

again these are the thousands of runs

that you run before it finally works the

way it should

and just to make it clear i’m not

picking on everyone else but myself

here’s a robot at caltech cassie this

was built by agility robotics but we’ll

be running our own algorithms on it

and we we’re like let’s demo this so

some kids were outside of our building

and we put it in front of the kids and

they got really excited and they were

taking pictures and this is all

wonderful

and then just a face plant

so i’m not immune to this the fact that

it takes a lot of work to get robots to

work

[Laughter]

there’s a grad student running in i was

there i didn’t make it in it was my grad

student that came in to save the day

so so where does this put everything

what’s the point of this the point of

this is twofold first

we imagine robots doing all these

amazing things why aren’t they doing

them today

and i would argue the big thing that’s

happening is there’s a gap right now

there’s a gap between what we understand

mathematically about the world and about

robots

and what we can actually get robots to

do

and the ultimate goal of getting robots

into the real world is to bridge this

gap

to bridge this understanding so that

when we do something we can put it on

the robot it will work the first time

every time and at the core of making

that happen

is mathematics so let me get slightly

technical for one second

and explain this process of what robots

look like and why it matters well it

matters again because we can get it on

robots that walk outside

we can get it on robotic assisted

devices but we have to start

at the mathematical level so let me just

give you a microcosm we always see

robots doing these amazing things what

actually goes on here how do we actually

make these robots do things

well the first thing you have to do is

start with the equations you have to

start with the math

the physics describing the system so

what you see on the screen behind me

is a small set uh just a little

component of the equations describing

the robot in the picture these equations

are hundreds of megabytes long

they’re massive and they’re all

complicated you can’t really see it here

but they’re signs and cosines and

squares they’re non-linear

they’re really daunting in their

complexity so we have to start with

those though because those govern the

forward evolution of the system

once we take those equations we pair it

with what we think

walking should look like so models of

locomotion let’s say

and then what theorems do is they take

all that mathematics

and they distill it down to the essence

the understanding of what walking in

locomotion really

is and we mathematically prove that in

fact we can generate this walking on

robots

now that math is great of course how do

we get it to work in practice is the

real question

well what math really does is it gives

algorithms those algorithms

which you see running here in this

little screenshot generate the walking

behaviors that finally go

on the robot so that’s the process

that’s underlying all of these things

and let me just kind of show you an

example of this theorem in action

so this theorem is running on this robot

via algorithms that were developed by my

students and myself

at our research lab and and so what’s

happening here is this robot

is walking dynamically with everything

on board

in a natural human-like way now the key

point here is no human data went into

generating this walking in fact this

walking is just purely a function of the

dynamics that are inherent to the system

itself

in fact the walking comes from making

the robot walk in the way that we walk

that is having heel strike toe strike

and a toe lift in its feet

and then it also comes from the fact

that there’s springs in the ankles that

we store energy

and release and the result of the

physics interfacing with the mathematics

is this natural human-like locomotion so

what else do theorems give us what else

does mathematics give us

gives us generality so once we

understand how to do this on one robot

we don’t have to repeat the process all

over again

rather we can take a totally different

robot in this case cassie which i

mentioned

earlier and we can take and apply the

same procedure you don’t even have to

look at all the stuff in this because

i’ve explained it all to you already and

we can get walking on flat ground in the

lab

we can get walking even outside now in

this case on some flat ground

outside and then finally we can even get

walking on some rough terrain

meaning that this math and these

theorems are robust enough that they let

us do this

and in environments that we didn’t

actually plan for

in fact we can take really aggressive

terrain to a certain degree

so this is a root system at cal tech

right outside of our building

and you see that the robot’s kind of

dancing a little bit here it’s having

it’s giving it a go trying to walk

through this very tough terrain

until it falls it did pretty well though

right it almost made it

we’ll watch it one more time because

it’s actually really amazing and

remember all of this is the mathematics

in action we’re not planning here

this is just using the dynamics of the

system to try to walk

almost all the way so the other thing

about theorems that’s really nice is

it’s not restricted to only bipeds

in fact we can apply the same general

mathematics to quadrupeds

quadrupeds are basically just two bipeds

that are kind of working together to

carry this thing in the middle right

and so this is the same exact root

system that cassie walked on but now

turns out the quadruped can actually

handle it you’ll see it actually gets a

little bit of air time there in the

process

and then ends up finishing the finishing

and not falling in this case which is

very nice

so we can apply this to different

platforms which is really exciting

finally we can do different behaviors

this is jumping cassie again

in this case cassie jumps about seven

inches in the air meaning his feet are

seven inches off the ground

i think this is probably almost better

than i could do and again the point is

once we understand that this physics of

movement this this mathematical

understanding of movement

we can make robots and different types

of robots do amazing things

so the question now becomes why do we

care

this is really cool and these are fun

and the videos are great and it’s great

seeing robots do amazing things

but why do we care and i think the point

here is that with this

understanding with understanding comes

responsibility

and taking this to a a domain where we

can actually

help people live better lives and let’s

be real however cool robots jumping is

that’s not going to make your life

better right

well maybe for a second when you watch

the video but beyond that it won’t it

won’t help you all too much

but imagine if we can take and translate

this understanding

to making people walk better

and this is the this is the merit in

studying bipedalism

because now that we understand how to

get human-like walking on bipedal robots

at a fundamental and mathematical level

we could translate it to things like

prosthetics and exoskeletons

right because this is all math it’s all

general we can view the human in a

general way and have them interact with

the device

in particular we can actually do this

very concretely and very scientifically

we can start with let’s say a walking

robot and we can take this theorem and

translate it to the device as if it was

a prosthetic

and that lets us equally take the same

ideas

and put it on prosthetic devices so this

is an actual amputee

walking with our first generation

prosthetic that was custom built by my

left

we’ve since made these prosthetics even

better this is our one of our latest

generation prosthetic devices again it’s

kind of amazing that

my students have built this by hand they

machine this they put it all together

all the electronics all the algorithms

all through their hard work and then we

take the math the theorem and put it on

here

and again just like we could take robots

outside we could take these prosthetic

devices outside

so in this case two of my students are

walking with the prosthetic around

caltech

they can handle terrains they can handle

some different environments

so this is this is what we want to do is

translate these technologies

but we can take these ideas even a step

further and this is this is more

challenging

more fun so a few years back we started

working with this

startup company in france of of all

places

and they had this idea they bravely had

this idea that they wanted to take the

math that we developed for walking

robots

and put it on exoskeletons for

paraplegics

so they designed and built this this

hardware but we

took the math that we have for walking

and put it on the device itself so my

grad student is in this in the video

you’re about to see here

helping them test out some of these

algorithms now the important thing is if

we can make this walk dynamically on its

own

what can we do we can put people into it

and they can walk dynamically even if

they can’t walk themselves

so what you’ll see here is first the

demonstration that the exoskeleton can

walk on its own

with nobody in it so we have a dummy in

it and it’s walking dynamically

again through the same map but now we

put a paraplegic in it

so this user is a complete paraplegic

meaning he has absolutely no function of

his legs and has not for 10

years and this is the first example of

dynamic walking

crutch-free walking with a paraplegic

that’s ever been demonstrated

it’s a powerful moment when you can

realize that this this passion of yours

this mathematical understanding that you

obsess over all the time can actually go

out and help people you know i heard

stories of this clinical testing the

loved ones around them

really connected with seeing them for

the first time upright

walking in a natural and dynamic way so

this is where we want to take these

ideas

and in this context at caltech we’re

fortunate enough through this

collaboration that we have one of these

devices

at caltech now and so what we’re able to

do is test it

in action test new ideas in the process

and try to bring them to

a case where we can actually have robots

and people work together

so that’s the vision underlying all this

as we want an environment where robots

and people

can interact in positive and beneficial

ways

so it’s not really fair you got to see a

bunch of videos of robots walking and

don’t get to see one yourself

so i’d like to welcome cassie to the

stage

so this is this robot was built by

agility robotics but is running all of

the math that i showed you today

meaning the mathematics under the hood

is what was developed by my students and

myself and collaborators in our lab

and you see that it has a very dynamic

feel to its walking

that’s because again we’re leveraging

the dynamics of locomotion

so in this case you’ll notice that

cassie has very small feet

that’s why it has to keep moving it also

has springs so it has these compliance

that has to go through

to help balance the system so we can

even do things

so so we’re going to try first here and

head up on the

let’s go good job cassie so cassie got

under the

the tad dot this might be one of the

first robots that’s been walking on the

ted dot dynamically

and so it’s able to handle all of these

terrains again

exactly because of what i talked about

earlier taking these

concepts and generalizing them

mathematically so that we can

characterize locomotion and these are

the same algorithms we ultimately put on

exoskeletons

to help people walk better and you can

imagine

somebody who can’t walk now walking with

these algorithms and able to even handle

a little bit of disturbances

get pushed on a little bit so we can

start to get close to robots

again years ago i wouldn’t have imagined

being able to stand next to a dynamic

walking robot and actually put my hand

on it

and interact with it and that’s where

we’re at today and

that’s where we want to head tomorrow is

more and more of this

human and robots working together in a

positive way

to affect change so with that thank you

very much

[Music]

you

[音乐]

[掌声]

机器人

长期以来一直在想象一个世界,在那里你

可以

出去远程探索宇宙

,在那里你可以拥有一个系统,

帮助你恢复

系统中的机动性恢复功能,

让你能够做一些事情,比如监控

野火和解决问题 他们立刻

就对了,我们的

想象力与

机器人可以做的事情一起疯狂的历史悠久,

这在科幻

小说中可以追溯到 50 年代,之前

由哮喘、海因莱因和克拉克等伟人记录,

机器人可以在

那里变得更好

让我们的生活更美好的自我版本

我们今天在哪里 机器人系统

很好 在过去的五年或十年中取得了令人难以置信的

收益 我们有

来自波士顿动力公司等公司的机器人 在

外面运行

正在做后空翻

这真的是 难以置信,

这是我 20 年前无法想象的事情

,你们都看过

这些视频,可能真的很重要

不仅如此,我们

还有将开始探索宇宙的机器人

我们已经在火星上

安装了漫游车 我们在空间站上有一个人形机器人在

我们的头顶上方

,我们将派一架

直升机去火星 2020 年,

所以我们开始使用机器人并

通过它们扩展自己

最终我们开始看到机器人

帮助人们过上更好的生活

所以这是通过重新行走它是

截瘫患者的下半身外骨骼

这是截瘫在

设备中行走的辅助设备 一些拐杖

,这也是我们想要做的,我们

想以积极的方式使用这种技术的力量

来帮助人们过上

更好的生活,但这里有一个重要的

一点,所有这些视频都没有

显示,

所以下面的秘密是什么 一切都很好,

首先

在这个外骨骼的背景下,

有一个

提示暗示它需要拐杖

为什么它需要拐杖因为

你刚刚看到的所有视频,

无论它们多么令人惊叹,它们都是唯一的

我在

尝试使它工作一千次之后

它工作了

所以波士顿动力我给了他们很大的

信任,因为他们

展示了当它在他们的机器人上不起作用时的结果,

所以情况变得更糟这是糟糕的一天它是

一个糟糕的机器人

所以我们也有很棒的后空翻

,这里有一些

后空翻的结果

,这些是

你在它最终以应有的方式运行之前运行的数千次跑步

,只是为了明确表示我不是在

挑剔其他人,而是 我自己

这里是加州理工学院的一个机器人 cassie 这

是由敏捷机器人制造的,但我们

将在其上运行我们自己的算法

,我们就像让我们演示一下,这样

一些孩子就在我们的大楼外

,我们把它放在孩子们面前

他们真的很兴奋,他们

正在拍照,这一切都

很棒

,然后只是一个面部植物,

所以我不能幸免于这个事实,

让机器人工作需要很多工作

[笑声]

有一个研究生 跑进去 我在

那里 我没有 没有成功,是我的

研究生进来拯救了这一天

,所以这把一切都放在哪里了这

是什么意思这点

是双重的首先

我们想象机器人在做所有这些

令人惊奇的事情为什么他们不做

他们今天

和我认为

正在发生的一件大事是现在

存在差距 我们

对世界和

机器人的数学理解

与我们实际上可以让机器人

做的事情

与让机器人进入现实的最终目标之间存在差距

世界是为了弥合这个

差距

来弥合这种理解,这样

当我们做某事时,我们可以把它

放在机器人上,它每次都会第一次工作,

而实现这一点的核心

是数学,所以让我稍微

技术一下

并解释机器人

长什么样的过程以及为什么它很重要它

再次重要因为我们可以在

外面行走的机器人上

得到它我们可以在机器人辅助设备上得到它

但我们必须

从 数学水平 所以让我

给你一个缩影 我们总是看到

机器人在做这些令人惊奇的

事情 这里实际发生了什么 我们如何真正

让这些机器人做好事情

你要做的第一件事就是从

你必须开始的方程式

开始

数学 物理 描述系统 所以

你在我身后的屏幕上看到的

只是一小部分 呃 只是图中

描述机器人的方程的一小部分

这些方程

有数百兆字节长

它们很大而且它们都是

复杂的你在这里看不到它,

但它们是符号、余弦和

正方形,它们是非线性的

,它们的复杂性确实令人生畏,

所以我们必须从这些开始,

因为它们曾经支配

着系统的向前演化

我们把这些方程

与我们认为

走路应该看起来的样子配对,所以运动模型

让我们说

,然后定理所做的就是他们把

所有的

数学都提炼出来 本质上

是对运动中行走的

真正理解,我们在数学上证明

事实上我们可以在机器人上产生这种行走,

因为数学很好,当然

我们如何让它在实践中发挥作用是

真正的

问题,数学真正做的是 它为算法提供了

你在这个

小屏幕截图中看到的那些算法,生成

最终

在机器人上进行的行走行为,

这就是所有这些事情的基础

,让我向你展示

这个定理的一个例子,

所以 这个定理是

通过我的

学生和我自己

在我们的研究实验室开发的算法在这个机器人上运行的,所以

这里发生的事情是这个机器人

正在

以一种自然的人类方式动态地行走,现在这里的关键

点是 没有人类数据用于

生成这种行走实际上这种

行走只是

系统本身固有的动力学的一个函数

事实上,步行来自于

让机器人以我们走路的方式行走

,即脚后跟撞击

脚趾和脚趾抬起

,然后它还来自

脚踝上有弹簧,

我们储存能量

并释放

物理与数学交互的结果

是这种自然的类人运动,所以

定理还给了我们

什么数学

给了我们普遍性,所以一旦我们

了解如何在一个机器人上做到这一点,

我们就不必 再次重复这个

过程,

而不是在这种情况下我们可以采用一个完全不同的

机器人,我

之前提到过的 cassie,我们可以采用和应用

相同的程序,您甚至不必

查看其中的所有内容,因为

我已经解释过了 一切都交给你了,

我们可以在实验室的平坦地面上行走,

我们现在甚至可以在外面行走,在

这种情况下,在外面的平坦地面上

,最后我们甚至可以

在一些崎岖的地形上行走,

这意味着你 这个数学和这些

定理足够强大,可以让

我们做到这一点,

而且在我们实际上没有计划的环境中,

我们可以

在一定程度上采取非常激进的地形,

所以这是加州理工学院的一个根系统,

就在 我们的建筑

,你看到机器人

在这里有点跳舞,

它正在尝试

穿过这个非常艰难的地形,

直到它掉下来它做得很好,

虽然它几乎成功了,

我们会再看一次 时间,因为

它实际上真的很神奇,

记住所有这些都是

我们在这里没有计划的实际数学,

这只是使用系统的动力学

来尝试

几乎一直走,所以

关于定理的另一件事真的很好

是 不仅限于两足

动物事实上我们可以将相同的通用

数学应用于四足动物

四足动物基本上只是两个两足动物

,它们一起工作以

将这个东西放在中间的右边

等等 s 与 cassie 走的完全相同的根

系统,但现在

事实证明,四足动物实际上可以

处理它,你会看到它

实际上在这个过程中获得了一点空气时间

,然后最终完成了整理

而不是陷入这个 案例

非常好,

所以我们可以将它应用到不同的

平台上,这真的很令人兴奋,

最后我们可以做不同的行为,

这是再次跳跃 cassie

在这种情况下,cassie 在空中跳跃了大约 7

英寸,这意味着他的脚

离地面有 7 英寸

我认为 这可能

比我能做的要好,而且重点是,

一旦我们了解这种运动的物理原理,这种对

运动的数学

理解,

我们就可以让机器人和不同类型

的机器人做出惊人的事情,

所以现在的问题变成了我们为什么要

关心

这个 真的很酷,这些很有趣

,视频很棒,很

高兴看到机器人做出了不起的事情,

但我们为什么要关心,我

认为这里的重点是

理解与理解带来

责任

,并将其带到一个领域,我们

实际上可以

帮助人们过上更好的生活,让我们

变得真实,但是很酷的机器人

跳跃不会让您的生活

变得更好,

也许当您观看视频时可能会有一秒钟,

但是 除此之外,它

不会对您有太大帮助,

但是想象一下,如果我们可以将

这种理解转化

为使人们走路更好

,这就是研究双足行走的优点,

因为现在我们了解了如何

使人类 - 就像在基础和数学层面上在双足机器人上行走一样,

我们可以将其转化为

假肢和外骨骼之类的东西,

因为这都是数学,都是

通用

的 实际上可以

非常具体和非常科学地做到这一点

我们可以从一个步行

机器人开始,我们可以把这个

定理转化为 e 设备就好像它是

一个假肢

,它让我们同样可以采用相同的

想法

并将其放在假肢设备上,所以这

是一个真正的截肢者

带着我们的第一代假肢行走,

这是我左手定制的,

我们已经制作了这些假肢

更好的是,这又是

我们最新一代的假肢设备

之一。

我的学生手工制作了这个,他们用

机器制造了这个,他们把

所有的电子设备和算法

都放在一起,通过他们的辛勤工作,然后我们

把数学 定理

并反复使用,就像我们可以把机器人带到

外面我们可以把这些假肢

设备带到外面

所以在这种情况下,我的两个学生

带着假肢在

加州理工学院周围行走,

他们可以处理地形,他们可以处理

一些不同的环境,

所以这是 这就是我们想要做的就是

翻译这些技术,

但我们可以将这些想法

更进一步,这是更具

挑战性的

很有趣,所以几年前,我们开始

在法国各地与这家

初创公司合作

,他们有了这个想法,他们勇敢地有了

这个想法,他们想把

我们为行走机器人开发的数学应用到

截瘫患者的外骨骼上,

所以 他们设计并制造了这个

硬件,但

我们将步行时的数学运算

放在设备本身上,所以我的

研究生在视频中,

你将在这里看到

帮助他们测试其中一些

算法 重要的是,如果

我们可以自己动态地行走

我们能做什么我们可以让人们参与其中

,即使他们不能自己行走,他们也可以动态

行走

所以你将在这里看到的首先是

演示 外骨骼可以

没有人的情况下自行行走,所以我们有一个假人

,它

在同一张地图上再次动态行走,但现在我们

在里面放了一个截瘫,

所以这个用户是一个完全截瘫的人,

他绝对有

他的腿没有任何功能,已经 10 年没有了

,这是第一个

动态

行走的例子

一直痴迷实际上可以

出去帮助你认识的人

采取这些

想法

,在加州理工学院的这种情况下,我们很

幸运通过这次

合作,我们

现在在加州理工学院拥有这些设备之一,所以我们能够

做的是

在行动中测试它,在这个过程中测试新想法

并尝试 将他们带到

一个案例,我们实际上可以让机器人

和人一起

工作,这就是所有这一切的愿景,

因为我们想要一个机器人

和人

可以互动的环境 以积极和有益的

方式,

所以这并不公平,你必须看到

一堆机器人走路的视频,而

你自己却看不到,

所以我想欢迎 cassie

上台,

所以这个机器人是由

agility 制造的 机器人学,但运行

着我今天向你展示的所有数学,

这意味着引擎盖下的数学

是由我的学生、

我自己和我们实验室的合作者开发的

,你会看到它的行走有一种非常动态的

感觉,

这是因为我们再次 ‘正在

利用运动的动力,

所以在这种情况下,你会注意到

cassie 的脚非常小

,这就是为什么它必须继续移动它

还有弹簧,所以它必须通过这些顺应性

来帮助平衡系统,所以我们可以

即使这样做

,所以我们要先在这里尝试,然后继续前进,

让我们好好干吧,cassie,所以 cassie 进入

了小点,这可能是

第一个动态地在小点上行走的机器人

,所以它是 能够 再次处理所有这些

地形,

正是因为我之前谈到的,

采用这些

概念并在

数学上对其进行概括,以便我们可以

表征运动,这些是

我们最终在外骨骼上使用的相同算法,

以帮助人们更好地行走,你可以想象

有人可以 现在不走路了 用

这些算法走路,甚至能够处理

一点点干扰,

所以我们可以

几年前再次开始接近机器人,我无法想象

能够站在一个动态的旁边

行走的机器人,实际上将我的手

放在它上面

并与之互动,这就是

我们今天

所处的位置,这就是我们明天想要前往的地方

,越来越多的

人类和机器人以

积极的方式合作

以影响变化,因此

非常感谢

[音乐]