The Infinite Hotel Paradox Jeff Dekofsky

In the 1920’s,

the German mathematician David Hilbert

devised a famous thought experiment

to show us just how hard it is

to wrap our minds
around the concept of infinity.

Imagine a hotel with an infinite
number of rooms

and a very hardworking night manager.

One night, the Infinite Hotel
is completely full,

totally booked up
with an infinite number of guests.

A man walks into the hotel
and asks for a room.

Rather than turn him down,

the night manager decides
to make room for him.

How?

Easy, he asks the guest in room number 1

to move to room 2,

the guest in room 2 to move to room 3,

and so on.

Every guest moves from room number “n”

to room number “n+1”.

Since there are an infinite
number of rooms,

there is a new room
for each existing guest.

This leaves room 1 open
for the new customer.

The process can be repeated

for any finite number of new guests.

If, say, a tour bus unloads
40 new people looking for rooms,

then every existing guest just moves

from room number “n”

to room number “n+40”,

thus, opening up the first 40 rooms.

But now an infinitely large bus

with a countably infinite
number of passengers

pulls up to rent rooms.

countably infinite is the key.

Now, the infinite bus
of infinite passengers

perplexes the night manager at first,

but he realizes there’s a way

to place each new person.

He asks the guest in room 1
to move to room 2.

He then asks the guest in room 2

to move to room 4,

the guest in room 3 to move to room 6,

and so on.

Each current guest moves
from room number “n”

to room number “2n” –

filling up only the infinite
even-numbered rooms.

By doing this, he has now emptied

all of the infinitely many
odd-numbered rooms,

which are then taken by the people
filing off the infinite bus.

Everyone’s happy and the hotel’s business
is booming more than ever.

Well, actually, it is booming
exactly the same amount as ever,

banking an infinite number
of dollars a night.

Word spreads about this incredible hotel.

People pour in from far and wide.

One night, the unthinkable happens.

The night manager looks outside

and sees an infinite line
of infinitely large buses,

each with a countably infinite
number of passengers.

What can he do?

If he cannot find rooms for them,
the hotel will lose out

on an infinite amount of money,

and he will surely lose his job.

Luckily, he remembers
that around the year 300 B.C.E.,

Euclid proved that there
is an infinite quantity

of prime numbers.

So, to accomplish this
seemingly impossible task

of finding infinite beds
for infinite buses

of infinite weary travelers,

the night manager assigns
every current guest

to the first prime number, 2,

raised to the power
of their current room number.

So, the current occupant of room number 7

goes to room number 2^7,

which is room 128.

The night manager then takes the people
on the first of the infinite buses

and assigns them to the room number

of the next prime, 3,

raised to the power of their seat
number on the bus.

So, the person in seat
number 7 on the first bus

goes to room number 3^7

or room number 2,187.

This continues for all of the first bus.

The passengers on the second bus

are assigned powers of the next prime, 5.

The following bus, powers of 7.

Each bus follows:

powers of 11, powers of 13,

powers of 17, etc.

Since each of these numbers

only has 1 and the natural number powers

of their prime number base as factors,

there are no overlapping room numbers.

All the buses' passengers
fan out into rooms

using unique room-assignment schemes

based on unique prime numbers.

In this way, the night
manager can accommodate

every passenger on every bus.

Although, there will be
many rooms that go unfilled,

like room 6,

since 6 is not a power
of any prime number.

Luckily, his bosses
weren’t very good in math,

so his job is safe.

The night manager’s strategies
are only possible

because while the Infinite Hotel
is certainly a logistical nightmare,

it only deals with the lowest
level of infinity,

mainly, the countable infinity
of the natural numbers,

1, 2, 3, 4, and so on.

Georg Cantor called this level
of infinity aleph-zero.

We use natural numbers
for the room numbers

as well as the seat numbers on the buses.

If we were dealing
with higher orders of infinity,

such as that of the real numbers,

these structured strategies
would no longer be possible

as we have no way
to systematically include every number.

The Real Number Infinite Hotel

has negative number rooms in the basement,

fractional rooms,

so the guy in room 1/2 always suspects

he has less room than the guy in room 1.

Square root rooms, like room radical 2,

and room pi,

where the guests expect free dessert.

What self-respecting night manager
would ever want to work there

even for an infinite salary?

But over at Hilbert’s Infinite Hotel,

where there’s never any vacancy

and always room for more,

the scenarios faced by the ever-diligent

and maybe too hospitable night manager

serve to remind us of just how hard it is

for our relatively finite minds

to grasp a concept as large as infinity.

Maybe you can help tackle these problems

after a good night’s sleep.

But honestly, we might need you

to change rooms at 2 a.m.

在 1920 年代

,德国数学家大卫希尔伯特

设计了一个著名的思想实验

,向我们展示

了将我们的思想
缠绕在无穷大的概念上是多么困难。

想象一家酒店拥有无限
数量的房间

和一个非常勤奋的夜班经理。

一晚,Infinite
Hotel 客满

,满座,宾客数不胜数。

一个男人走进旅馆
,要一个房间。

夜班经理没有拒绝他,而是决定
为他腾出空间。

如何?

很简单,他让 1 号房间的客人

搬到 2 号房间,

让 2 号房间的客人搬到 3 号房间

,以此类推。

每位客人从房间号“n”移动

到房间号“n+1”。

由于房间数量无限,

因此
每位现有客人都有一个新房间。

这使房间 1
对新客户开放。

可以

为任何有限数量的新客人重复该过程。

例如,如果一辆旅游巴士卸下了
40 位新人来寻找房间,

那么每个现有客人只需

从房间号“n”移动

到房间号“n+40”,

从而打开前 40 个房间。

但现在

,一辆载着
无数乘客的无限大巴士

停下来出租房间。

可数无限是关键。

现在,无限乘客的无限巴士

起初让夜班经理感到困惑,

但他意识到有一种方法

可以安置每个新人。

他让 1 号房间的客人
搬到 2 号房间。

然后他让 2 号房间的客人

搬到 4 号房间,

让 3 号房间的客人搬到 6 号房间

,以此类推。

每个当前客人
从房间号“n”移动

到房间号“2n”——

只填满无限
的偶数房间。

通过这样做,他现在已经清空了

所有无限多的
奇数房间

,然后由无限巴士下的人
带走。

每个人都很高兴,酒店的业务
比以往任何时候都更加繁荣。

嗯,实际上,它的繁荣
程度与以往完全相同,

每晚存入无数美元。

关于这家令人难以置信的酒店的消息传开了。

人们从四面八方涌入。

一天晚上,不可思议的事情发生了。

夜班经理向外面望去

,看到一
排无限大的公共汽车,

每辆都有
无数的乘客。

他能做什么?

如果他找不到他们的房间
,酒店将

损失无数的钱

,他肯定会失去工作。

幸运的是,他
记得大约在公元前 300 年,

欧几里得证明

了素数的数量是无限的。

因此,为了完成这个
看似不可能的任务

,为无限疲惫的旅客找到无限的
巴士

,夜班经理将
每个当前的客人分配

到第一个素数,2,

提高到
他们当前房间号的幂。

因此,当前 7 号房间的住户

前往 2^7 号房间,

也就是 128 号房间

。夜班经理然后将人员
带上第一辆无限巴士

,并将他们分配到

下一个素数 3 的房间号,

提高到他们
在公共汽车上的座位号的幂。

所以,
第一班公共汽车上 7 号座位的人

去 3^7

号房间或 2,187 号房间。

对于所有第一辆公共汽车,这种情况继续存在。

第二辆公共汽车上的乘客

被分配下一个素数 5

的幂。接下来的公共汽车是 7 的幂。

每辆公共汽车遵循:

11 的幂,13 的

幂,17 的幂等。

因为这些数字中的每一个

只有 1 和

它们的素数底的自然数次方作为因数,

没有重叠的房间号。

所有公共汽车的乘客都

使用

基于唯一质数的独特房间分配方案扇形进入房间。

这样,夜班
经理就可以接待

每辆公共汽车上的每一位乘客。

虽然会有
很多房间空着,

比如房间 6,

因为 6 不是
任何素数的幂。

幸运的是,他的
老板数学不是很好,

所以他的工作很安全。

夜班经理的策略
之所以可行,

是因为虽然无限酒店
无疑是一场后勤噩梦,

但它只处理最低
级别的无限,

主要是自然数的可数无限

,1、2、3、4 等。

Georg Cantor 将这个级别
的无穷大称为零。

我们使用自然数
作为房间号

以及公共汽车上的座位号。

如果我们
处理更高阶的无穷大,

例如实数,

这些结构化策略
将不再可能,

因为我们
无法系统地包含每个数字。

Real Number Infinite Hotel

在地下室有负数房间,

小数房间,

所以房间 1/2 的人总是怀疑

他的房间比房间 1 的人少。

平方根房间,如房间激进 2

和房间 pi,

客人期望免费甜点的地方。

有哪个自尊的夜班经理
愿意在那儿工作,

即使是无限的薪水?

但是在希尔伯特的无限酒店,

那里从来没有任何空缺

,总是有更多的空间,

这位一直勤奋

而且可能过于热情好客的夜班经理所面临的情景

提醒我们,

对于我们相对有限的头脑

来说,掌握一个 无限大的概念。

也许你可以在睡个好觉后帮助解决这些问题

但老实说,我们可能需要你

在凌晨 2 点换房间。