How you can make a fruit fly eat veggies DIY Neuroscience a TED series

Translator: Joseph Geni
Reviewer: Krystian Aparta

Greg Gage: It’s an age-old
pursuit of all parents,

getting their kids
to eat their vegetables.

But getting them to eat
cookies or ice cream

is relatively easy,

and that’s because our brains
prefer sweetness.

Now, there’s a new technology
called optogenetics

which may be able to trick our taste buds,

for instance preferring
vegetables over sweets.

We’re going to try this today
using fruit flies.

[DIY Neuroscience]

The reason why we experiment
with fruit flies

is they have a small enough nervous system

that gives us a fighting chance
to really understand what’s going on.

And believe it or not, their taste buds
are very similar to ours.

But before we try to manipulate
their taste preferences,

we need to establish:
What is the baseline of the fruit fly?

What does it prefer?

We call this a control experiment.

Spencer’s been hard at work doing this.

OK, Spencer, let’s do
our first experiment.

We want to test to see if fruit flies
prefer bananas or broccoli.

So what do we need?

Spencer Brown: So we need the fly pad,
which is basically an iPad for flies.

It measures the touch.

GG: You put a fly in each chamber?

SB: Yeah. Inside, we’ll offer them
banana and broccoli

to see which one they prefer.

GG: In order to count how many times

the fruit fly eats a banana
versus the broccoli,

these chambers have been outfitted
with a small electrode

that sends data to a computer.

And so what were your findings
on banana versus broccoli?

SB: I found that the flies
visited banana the most.

GG: Both were there, but like most kids,

they choose not to eat the broccoli,
and they go switch to something sweeter.

GG: Now a quick background
on how taste works.

Taste buds are made up
of specialized neurons

called taste receptors.

When we eat something
that triggers a particular taste,

those taste neurons will fire
a signal to the brain.

This allows our brain to know
what’s sweet and what’s bitter.

So when a fruit fly eats a banana,
its sweet taste neurons will fire.

But when it eats broccoli,
those same neurons stay pretty quiet.

But what if we could force
those sweet-tasting neurons to fire

every time the fruit fly eats broccoli?

We may be able to get the fruit fly

to like broccoli as much as banana.

Enter optogenetics.

This is the revolutionary new tool
that’s taking neuroscience by storm,

and in this case, “opto” means light

and “genetic” refers to the fact
that these fruit flies have been modified

to contain a special gene that makes
only certain neurons respond to light.

In our case, we’ve added the special gene
to the sweet taste receptors.

Now here’s the fun part.

Optogenetics means that we
can control these special neurons

whenever they’re exposed
to a bright-colored light,

causing them to send
messages to the brain.

In this experiment, we’re going to have
these modified fruit flies

choose between banana and broccoli again,

only this time, every time
the fruit fly eats the broccoli,

we’re going to trigger
a big bright red light.

And when the channels see that red light,
they’re going to open up,

and they’re going to cause
that neuron to fire,

and the sweet taste message
will be sent to the brain.

How do you get them out?

SB: So we’re going to be using
a mouth aspirator,

so it’s just two straws put together.

GG: So it’s a fancy name for a straw.

SB: Basically.

GG: So you’re going to suck those out.

Have you ever sucked up a fly before?

SB: Once or twice.

GG: There we go. You got all four.

OK, perfect.

So you’re going to turn on
your OptoStimmers here.

You’re going to park the light
right on top of the chambers.

So now we sit here and we wait
for them to eat broccoli,

and then when the light fires,

they’re going to think
it’s tasting something sweet.

Come on. Oh, he’s getting closer.

Come on. It tastes good now.

SB: It’s about to.

GG: Oh, he’s back. All right!

All right, so now we see
that some of these flies

are switching over from
the banana to the broccoli.

SB: Exactly, yeah.

GG: Every time this light goes off,

that means that they think
they’re tasting something sweet.

SB: Yeah. So this guy’s
really going after it.

GG: So we saw that we were able
to rescue broccoli

and make it just as appealing
as banana to our fruit flies.

And we’re able to replicate
these same results

in all of our experiments.

So the question is: Can we
do the same thing in humans?

Well, that depends on a number of items.

First, do optogenetic tools
even work in humans?

And that looks like the answer is yes,

and in fact, clinical trials
are already being planned

that will treat chronic pain
and blindness using optogenetics.

And the next question is,
can we easily trigger a light source

so that every time we eat
vegetables, it will go off?

For that, I’m afraid at least
at this time, the answer is still no.

But today, we got to witness
just a taste of optogenetics

and its amazing potential.

(Music)

译者:Joseph Geni
审稿人:Krystian Aparta

Greg Gage:让孩子吃蔬菜
是所有父母的古老追求

但是让他们吃
饼干或

冰淇淋相对容易

,那是因为我们的大脑
更喜欢甜味。

现在,有一种
称为光遗传学

的新技术可能会欺骗我们的味蕾,

例如喜欢
蔬菜而不是甜食。

我们今天要用果蝇来试试这个

[DIY 神经科学]

我们用果蝇做实验的原因

是它们的神经系统足够小,

这让我们有
机会真正了解发生了什么。

不管你信不信,他们的味蕾
和我们的很相似。

但在我们试图操纵
他们的口味偏好之前,

我们需要确定:
果蝇的基线是什么?

它更喜欢什么?

我们称之为对照实验。

斯宾塞一直在努力做到这一点。

好的,Spencer,让我们做
第一个实验。

我们想测试一下果蝇是否
喜欢香蕉或西兰花。

那么我们需要什么?

Spencer Brown:所以我们需要苍蝇垫,
它基本上是一个供苍蝇使用的 iPad。

它测量触摸。

GG:你在每个房间里放了一只苍蝇?

SB:是的。 在里面,我们会为他们提供
香蕉和西兰花

,看看他们更喜欢哪一种。

GG:为了计算

果蝇吃香蕉
和西兰花的次数,

这些小室配备
了一个小电极

,可以将数据发送到计算机。

那么你
对香蕉和西兰花的发现是什么?

SB:我发现苍蝇
最常光顾香蕉。

GG:两者都在那里,但像大多数孩子一样,

他们选择不吃西兰花
,而是改吃更甜的东西。

GG:现在简要
介绍一下品味是如何起作用的。

味蕾由称为味觉受体
的特殊神经元组成

当我们吃的东西
会触发某种特定的味道时,

这些味觉神经元会
向大脑发出信号。

这让我们的大脑知道
什么是甜的,什么是苦的。

所以当果蝇吃香蕉时,
它的甜味神经元会被激发。

但是当它吃西兰花时,
同样的神经元会保持安静。

但是,如果我们能在
果蝇每次吃西兰花时强迫那些尝甜味的神经元放电

呢?

我们也许可以让

果蝇像喜欢香蕉一样喜欢西兰花。

进入光遗传学。

这是
席卷神经科学的革命性新工具

,在这种情况下,“opto”表示光

,“遗传”是
指这些果蝇经过修饰

以包含一种特殊基因,该基因
仅使某些神经元对光有反应 .

在我们的例子中,我们将特殊基因添加
到甜味感受器中。

现在这是有趣的部分。

光遗传学意味着我们
可以控制这些特殊的神经元,

只要它们暴露
在明亮的光线下,就可以

使它们
向大脑发送信息。

在这个实验中,我们要让
这些经过改造的果蝇

再次在香蕉和西兰花之间进行选择,

只是这一次,
每次果蝇吃掉西兰花时,

我们都会触发
一个大的明亮的红灯。

当通道看到红光时,
它们就会打开

,它们
会激发那个神经元

,甜味信息
就会被发送到大脑。

你怎么把它们弄出来?

SB:所以我们将
使用吸嘴器,

所以它只是将两根吸管放在一起。

GG:所以这是一个吸管的花哨的名字。

SB:基本上。

GG:所以你要把它们吸出来。

你以前吸过苍蝇吗?

SB:一次或两次。

GG:我们去。 你得到了所有四个。

好的,完美。

所以你要在
这里打开你的 OptoStimmers。

你要把灯停
在房间的顶部。

所以现在我们坐在这里,
等他们吃西兰花,

然后当灯亮起时,

他们会认为
它尝到了甜味。

来吧。 哦,他越来越近了。

来吧。 现在味道很好。

SB:快到了。

GG:哦,他回来了。 好的!

好的,所以现在我们看到
其中一些苍蝇

正在
从香蕉转向西兰花。

SB:没错,是的。

GG:每次这盏灯熄灭,

这意味着他们认为
他们正在品尝甜食。

SB:是的。 所以这家伙
真的要追了。

GG:所以我们看到我们
能够拯救西兰花

,让它
像香蕉一样对我们的果蝇有吸引力。

我们能够

在我们所有的实验中复制这些相同的结果。

所以问题是:我们
可以在人类身上做同样的事情吗?

嗯,这取决于许多项目。

首先,光遗传学工具
甚至对人类有用吗?

看起来答案是肯定的

,事实上,
已经在计划

使用光遗传学治疗慢性疼痛
和失明的临床试验。

接下来的问题是,
我们能否轻松触发光源,

让我们每次吃
蔬菜时,它都会熄灭?

对此,恐怕至少
在这个时候,答案仍然是否定的。

但是今天,我们
只是亲眼目睹了光遗传学

及其惊人的潜力。

(音乐)