The fascinating science behind phantom limbs Joshua W. Pate

The vast majority of people
who’ve lost a limb can still feel it—

not as a memory or vague shape,
but in complete lifelike detail.

They can flex their phantom fingers

and sometimes even feel
the chafe of a watchband

or the throb of an ingrown toenail.

And astonishingly enough,

occasionally even people born
without a limb can feel a phantom.

So what causes phantom limb sensations?

The accuracy of these apparitions

suggests that we have a map
of the body in our brains.

And the fact that it’s possible

for someone who’s never had a limb
to feel one

implies we are born with at least
the beginnings of this map.

But one thing sets the phantoms
that appear after amputation

apart from their flesh
and blood predecessors:

the vast majority of them are painful.

To fully understand phantom limbs
and phantom pain,

we have to consider the entire pathway
from limb to brain.

Our limbs are full of sensory neurons
responsible for everything

from the textures we feel
with our fingertips

to our understanding
of where our bodies are in space.

Neural pathways carry this sensory input
through the spinal cord

and up to the brain.

Since so much of this path
lies outside the limb itself,

most of it remains
behind after an amputation.

But the loss of a limb

alters the way signals travel
at every step of the pathway.

At the site of an amputation,

severed nerve endings can thicken
and become more sensitive,

transmitting distress signals
even in response to mild pressure.

Under normal circumstances,

these signals would be curtailed
in the dorsal horn of the spinal cord.

For reasons we don’t fully understand,
after an amputation,

there is a loss of this inhibitory
control in the dorsal horn,

and signals can intensify.

Once they pass through the spinal cord,
sensory signals reach the brain.

There, the somatosensory cortex
processes them.

The entire body is mapped in this cortex.

Sensitive body parts
with many nerve endings,

like the lips and hands,

are represented by the largest areas.

The cortical homunculus is a model
of the human body

with proportions based on the size of each
body part’s representation in the cortex,

The amount of cortex devoted
to a specific body part can grow or shrink

based on how much sensory input
the brain receives from that body part.

For example, representation of the left
hand is larger in violinists

than in non-violinists.

The brain also increases
cortical representation

when a body part is injured

in order to heighten sensations
that alert us to danger.

This increased representation
can lead to phantom pain.

The cortical map is also
most likely responsible

for the feeling of body parts
that are no longer there,

because they still
have representation in the brain.

Over time, this representation may shrink
and the phantom limb may shrink with it.

But phantom limb sensations
don’t necessarily disappear on their own.

Treatment for phantom pain
usually requires

a combination of physical therapy,

medications for pain management,

prosthetics,

and time.

A technique called mirror box therapy

can be very helpful in developing
the range of motion

and reducing pain in the phantom limb.

The patient places the phantom limb
into a box behind a mirror

and the intact limb
in front of the mirror.

This tricks the brain
into seeing the phantom

rather than just feeling it.

Scientists are developing
virtual reality treatments

that make the experience
of mirror box therapy even more lifelike.

Prosthetics can also
create a similar effect—

many patients report pain

primarily when they remove
their prosthetics at night.

And phantom limbs may in turn

help patients conceptualize
prosthetics as extensions of their bodies

and manipulate them intuitively.

There are still many questions
about phantom limbs.

We don’t know why some amputees
escape the pain

typically associated
with these apparitions,

or why some don’t have phantoms at all.

And further research into phantom limbs

isn’t just applicable to the people
who experience them.

A deeper understanding
of these apparitions

will give us insight into the work
our brains do every day

to build the world as we perceive it.

They’re an important reminder

that the realities we experience are,
in fact, subjective.

绝大多数失去肢体的人仍然可以感觉到它——

不是作为记忆或模糊的形状,
而是完全栩栩如生的细节。

他们可以弯曲他们的幻影手指

,有时甚至会感觉到
表带的摩擦

或向内生长的脚趾甲的跳动。

令人惊讶的是,

有时即使是天生
没有肢体的人也能感觉到幻影。

那么是什么导致幻肢感觉呢?

这些幻影的准确性

表明
我们的大脑中有一张身体地图。

事实上,

从未有过肢体的人有
可能感觉到肢体,这

意味着我们至少
在这张地图的开端出生。

但有一件事
让截肢后出现的幻影

与他们的血肉前辈区别开来

:绝大多数都是痛苦的。

要充分了解幻肢
和幻痛,

我们必须考虑
从肢体到大脑的整个路径。

我们的四肢充满了感觉神经元,
负责

从我们用指尖感觉到的纹理

到我们对
身体在空间中位置的理解。

神经通路将这种感觉输入
通过

脊髓传递到大脑。

由于这条路径的大部分
位于肢体本身之外,因此

大部分在截肢后仍留
在后面。

但是失去肢体

会改变信号
在通路每一步的传播方式。

在截肢部位,

被切断的神经末梢会变厚
并变得更加敏感,

即使在轻微的压力下也会发出求救信号。

在正常情况下,

这些信号会
在脊髓背角被削弱。

由于我们不完全理解的原因,
在截肢后

,背角的这种抑制性控制丧失

,信号会增强。

一旦它们通过脊髓,
感觉信号就会到达大脑。

在那里,体感皮层
处理它们。

整个身体都映射在这个皮层中。

具有许多神经末梢的敏感身体部位,

如嘴唇和手

,由最大的区域表示。

皮质小人是人体的模型
,其

比例基于皮质中每个
身体部位的表示大小,

专用
于特定身体部位的皮质量可以

根据
大脑从该部位接收到的感觉输入的多少而增长或缩小 身体的一部分。

例如,
左手在小提琴家中的表现

比在非小提琴家中更大。

当身体部位受伤时,大脑也会增加
皮层的表现

以增强
提醒我们注意危险的感觉。

这种增加的表现
会导致幻痛。

皮层图也
很可能

对不再存在的身体部位的感觉负责

因为它们仍然
在大脑中具有代表性。

随着时间的推移,这种表示可能会缩小
,幻肢可能会随之缩小。

但幻肢感觉
不一定会自行消失。

幻痛的治疗
通常

需要结合物理治疗、

疼痛管理药物、

假肢

和时间。

一种称为镜盒疗法的技术

对于
发展运动范围

和减轻幻肢的疼痛非常有帮助。

患者将幻肢
放入镜子后面的盒子中

,将完整的肢体
放在镜子前。

这会诱使
大脑看到幻影,

而不仅仅是感觉它。

科学家们正在开发
虚拟现实疗法

,使
镜盒疗法的体验更加逼真。

假肢也可以
产生类似的效果——

许多患者

主要
在晚上取下假肢时报告疼痛。

幻肢可能反过来

帮助患者将
假肢概念化为他们身体的延伸

并直观地操纵它们。

关于幻肢还有很多疑问。

我们不知道为什么有些截肢者能
逃脱

通常
与这些幻影相关的痛苦,

或者为什么有些人根本没有幻影。

对幻肢的进一步研究

不仅适用于
体验过它们的人。 对这些幻影

的更深入了解

将使我们深入了解
我们的大脑每天

为构建我们所感知的世界所做的工作。

它们是一个重要的提醒

,我们所经历的现实
实际上是主观的。