The fascinating science of bubbles from soap to champagne Li Wei Tan

Some years ago, I was visiting Paris

and walking along the Seine River
during a beautiful summer afternoon.

I saw giant bubbles
floating on the riverbank,

like this one.

The next moment, it popped and was gone.

Making them were two street performers
surrounded by a crowd.

They visibly make a living
by asking for donations

and by selling pairs of sticks
tied with two strings.

When I was there, a man bought
a pair of sticks for 10 euros,

which surprised me.

I am a scientist who is
passionate about bubbles.

I know the right trick
to make the giant bubbles

is the right soapy water mixture itself –

not the sticks,

which may be needed,

but you can easily make them at home.

Focusing on the sticks makes us not see
that the real tool is the bubble itself.

Bubbles might seem like something
just children make while playing,

but sometimes it can be really stunning.

However, there are more
fascinating science to bubbles,

such as problem-solving tools.

So I would like to share with you

a few stories about
the science of creating bubbles

and the science of eliminating
the microscopic ones.

Since it’s up on the screen,
let’s start with the soap bubble.

It is made from very common substances:

air, water, soap, in the right mixture.

You can see soap bubbles
constantly changing their colors.

This is due to the interaction with light
at various directions

and the changes of their thickness.

One of the common substances,
water molecules,

are formed by two atoms of hydrogen
and one atom of oxygen – H2O.

On most surfaces, water droplets
tend to curve inwards,

forming a semihemisphere shape.

This is because the water droplet’s
surface is like an elastic sheet.

The water molecule on the surface
is constantly being pulled inwards

by the molecule at the center.

And the quality of the elasticity
is what we call “surface tension.”

Now by adding soap,

what happens is the soap molecule
reduces the surface tension of water,

making it more elastic
and easier to form bubbles.

You can think of a bubble
as a mathematical problem-solver.

You see it relentlessly trying
to achieve geometry perfection.

For instance, a sphere is the shape
with the least surface area

for a given volume.

That’s why a single bubble
is always in the shape of a sphere.

Let me show you. Check it out.

This is a single bubble.

When two bubbles touch each other,

they can save materials
by sharing a common wall.

When more and more bubbles
are added together,

their geometry changes.

These four bubbles are added together.

They meet at one point at the center.

When six bubbles are added together,

a magical cube appears at the center.

(Applause)

That is surface tension at work,

trying to find the most effective
geometry arrangement.

Now, let me give you another example.

This is a very simple prop.

This is made from two layers of plastic

with four pins connected to each other.

Imagine these four pins represent
four cities that are equally apart,

and we would like to make roads
to connect these four cities.

My question is: What is the shortest
length to connect these four cities?

Let’s find out the answer
by dipping it into the soapy water.

Remember, the soap bubble forms
will always try to minimize

their surface area

with a perfect geometry arrangement.

So the solution might not be
something you expected.

The shortest length
to connect these four cities

is 2.73 times the distance
between these two cities.

(Applause)

Now you’ve got the idea.

The soap bubble forms will always try
to minimize their surface area

with a perfect geometry arrangement.

Now, let us look at bubbles
in another perspective.

My daughter, Zoe, loves visiting zoos.

Her favorite spot is Penguin Cove
at Marwell Zoo in Southern England,

where she could see penguins
swim at speed under the water.

One day, she noticed
that the body of penguins

leaves a trail of bubbles when they swim

and asked why.

Animals and birds like penguins

that spend a lot of their time
under the water

have evolved an ingenious way
of utilizing the capability of bubbles

to reduce the density of water.

Emperor penguins are thought to be able
to dive a few hundred meters

below the sea surface.

They are thought to store
the air under their feathers

before they dive

and then progressively release it
as a cloud of bubbles.

This reduces the density
of water surrounding them,

making it easier to swim through

and speed up their swimming speed
at least 40 percent.

This feature has been noticed
by the ship manufacturers.

I am talking about the big ships here,

the ones that are used to transport
thousands of containers across the ocean.

Recently, they developed a system
called “air lubricating system,”

inspired by the penguins.

In this system, they produce
a lot of air bubbles

and redistribute them across
the whole of the ship,

like an air carpet
that reduces the water resistance

when a ship is moving.

This feature cuts off the energy
consumption for the ship

up to 15 percent.

Bubbles can also be used for medicines.

It can also play a role in medicines,

for instance, as a method for noninvasive
delivery systems for drugs and genes

to a specific part of the body.

Imagine a microbubble

filled with a mixture
of drugs and magnetic agents

being injected into our bloodstream.

The bubbles will move to the target areas.

But how do they know where to go?

Because we placed a magnet there.

For instance, this part of my hand.

When the microbubbles
move to this part of my hand,

we can pop it via ultrasound

and release the drug
exactly where it’s needed.

Now, I mentioned about
the science of creating bubbles.

But sometimes we also need to remove them.

That’s actually part of my job.

My exact job title is
“ink formulation scientist.”

But I don’t work on the ink
that you use for your writing pens.

I’m working on some cool applications

such as organic photovoltaics, OPVs,

and organic light-emitting diodes, OLEDs.

Part of my job is to figure out
how and why we want to remove the bubbles

from the ink that my company produces.

During the formulation-mixing process,

or preparation process,

we mix active ingredients,
solvents and additives

in order to achieve the formulations
with the properties we want

when the ink is being used.

But just like you would make drinks

or bake cakes,

it is unavoidable that some air bubbles
will be trapped inside that ink.

Here, we are talking
about a different space

from the bubbles I’d seen in Paris.

The bubbles that are trapped
inside those inks

vary between a few millimeters,

a few microns

or even a few nanometers in size.

And what we are concerned about

is the oxygen and the moisture
that is trapped inside.

At this size scale,
removing them is not easy.

But it matters,

for instance, for organic
light-emitting diodes inks

that we can use to produce display
for your smartphone, for example.

It’s supposed to last for many years,

but if the ink that we use has been
absorbed with oxygen and moisture

[which] are not being removed,

then we can quickly see
dark spots appear in the pixels.

Now, one challenge we face
in removing the microbubbles

is that they are not very cooperative.

They like to sit there,

bathing in the ink without moving much.

But how do we kick them out?

One technology we use

is to force the ink going through
a thin, long and tiny tube

with a porous wall,

and we place the tubes
inside the vacuum chamber,

so that the bubbles can be
squeezed out from the ink

and be removed.

Once we manage to remove the bubbles
from the ink that we produce,

it is time for celebration.

Let’s open a bubbling champagne.

Ooh, this is going to be fun!

(Laughter)

Woooo!

(Applause)

You could see a lot of bubbles
rushing out from the champagne bottle.

These are the bubbles
filled with carbon dioxide,

a gas that’s been produced during
the fermentation process of the wine.

Let me pour some out.

I can’t miss the chance.

I guess it’s enough.

(Laughter)

Here, I can see a lot of microbubbles

moving from the bottom of the glass
to the top of the champagne.

Before it pops,

it will jet tiny droplets
of aroma molecules

and intensify the flavor of champagne,

making us enjoy much more
the flavor of champagne.

As a scientist who is
passionate about bubbles,

I love to see them,

I love to play with them,

and I love to study them.

And also, I love to drink them.

Thank you.

(Applause)

几年前,我在一个美丽的夏日午后访问巴黎

,沿着塞纳河散步

我看到
河岸上漂浮着巨大的气泡,

就像这个。

下一刻,它弹出并消失了。

让他们成为
被人群包围的两名街头艺人。

显然,他们
靠募捐

和出售
用两根绳子绑起来的木棍来谋生。

当我在那里的时候,一个男人
花了10欧元买了一对棍子,

这让我很惊讶。

我是一个
对气泡充满热情的科学家。

我知道
制造巨型气泡的正确技巧

是正确的肥皂水混合物本身——

而不是可能需要的棒,

但你可以在家里轻松制作它们。

专注于棍子让我们看
不到真正的工具是泡沫本身。

泡泡可能看起来
像是孩子们在玩耍时制作的东西,

但有时它可能真的很惊人。

然而,泡泡还有更
迷人的科学,

比如解决问题的工具。

所以我想和大家分享

一些
关于创造

气泡的科学和消除微观气泡的科学
的故事。

既然它在屏幕上,
让我们从肥皂泡开始。

它由非常常见的物质制成:

空气、水、肥皂,并以适当的混合物制成。

你可以看到肥皂泡
不断地改变它们的颜色。

这是由于与各个方向的光的相互作用

及其厚度的变化。

一种常见的物质,
水分子,

是由两个氢
原子和一个氧原子——H2O形成的。

在大多数表面上,水滴
倾向于向内弯曲,

形成半半球形状。

这是因为水滴的
表面就像一张弹性薄片。

表面的水分子
不断地

被中心的分子向内拉。

而弹性的质量
就是我们所说的“表面张力”。

现在通过添加肥皂

,肥皂分子
会降低水的表面张力,

使其更有弹性
,更容易形成气泡。

您可以将泡沫
视为数学问题的解决者。

您会看到它无情地
试图实现几何完美。

例如,球体是

给定体积具有最小表面积的形状。

这就是为什么单个气泡
总是呈球体形状的原因。

我来给你展示。 看看这个。

这是一个单一的泡沫。

当两个气泡相互接触时,

它们可以
通过共用一堵墙来节省材料。

当越来越多的
气泡加在一起时,

它们的几何形状就会发生变化。

这四个气泡加在一起。

他们在中心的某一点相遇。

当六个气泡加在一起时,

一个神奇的立方体出现在中心。

(掌声)

那是表面张力在起作用,

试图找到最有效的
几何排列。

现在,让我再举一个例子。

这是一个非常简单的道具。

这是由两层塑料

制成,四个销相互连接。

想象这四个引脚代表
四个相距相等的城市

,我们想修建道路
来连接这四个城市。

我的问题是:
连接这四个城市的最短距离是多少?

让我们
把它浸入肥皂水中找出答案。

请记住,肥皂泡形状
总是会尝试通过完美的几何排列来最小化

它们的表面积

所以解决方案可能
不是你所期望的。

连接这四个城市的最短距离

是这两个城市之间距离的2.73倍。

(掌声)

现在你明白了。

肥皂泡形式总是试图通过完美的几何排列
来最小化它们的表面积

现在,让我们
从另一个角度来看泡沫。

我的女儿佐伊喜欢参观动物园。

她最喜欢的地方是
英格兰南部马威尔动物园的企鹅湾,

在那里她可以看到企鹅
在水下高速游泳。

一天,她
注意到企鹅

游泳时身体会留下一串气泡,

并问为什么。

企鹅等动物和鸟类在水下

度过了很多时间,它们

已经进化出一种巧妙的方式
,利用气泡的能力

来降低水的密度。

帝企鹅被认为
能够潜入

海面以下几百米。

人们认为
它们在潜水前将空气储存在羽毛下

,然后逐渐
释放出气泡云。

这降低了
它们周围的水的密度,

使其更容易游泳,

并将它们的游泳速度提高
至少 40%。

这一特点已
被船舶制造商注意到。

我说的是这里的大船

,那些用来运送
数千个集装箱穿越海洋的船。

最近,他们受到企鹅的启发,开发了一种
名为“空气润滑系统”的系统

在这个系统中,它们会
产生大量气泡

并将它们重新分布
在整个船舶上,

就像

在船舶移动时降低水阻力的空气地毯一样。

此功能
可将船舶的能耗降低

15%。

气泡也可用于药物。

它还可以在药物中发挥作用,

例如,作为一种
将药物和基因无创递送

到身体特定部位的方法。

想象一个

充满
药物和磁性剂混合物的微泡

被注入我们的血液。

气泡将移动到目标区域。

但是他们怎么知道去哪里呢?

因为我们在那里放了一块磁铁。

比如我手的这个部分。

当微泡
移动到我手的这一部分时,

我们可以通过超声波

将其弹出,并将药物
准确地释放到需要的地方。

现在,我提到
了制造气泡的科学。

但有时我们也需要删除它们。

这实际上是我工作的一部分。

我的确切职位是
“墨水配方科学家”。

但我不研究
你用于书写笔的墨水。

我正在研究一些很酷的应用,

例如有机光伏、OPV

和有机发光二极管、OLED。

我的部分工作是弄清楚
我们要如何以及为什么

要从我公司生产的墨水中去除气泡。

在配方混合过程

或制备过程中,

我们混合活性成分、
溶剂和添加剂

,以便在使用墨水时实现
具有我们想要的特性的配方

但就像你会做饮料

或烤蛋糕一样

,一些气泡
会被困在墨水中是不可避免的。

在这里,我们
谈论的是与

我在巴黎看到的泡泡不同的空间。

被困
在这些墨水中的气泡

大小在几毫米、

几微米

甚至几纳米之间。

而我们所关心的

是被困在里面的氧气和水分

在这种规模下,
移除它们并不容易。

但这很重要,

例如,我们可以使用有机
发光二极管墨水

为您的智能手机生产显示屏。

它应该可以使用很多年,

但是如果我们使用的墨水已经
被氧气和水分吸收了

[这些] 没有被去除,

那么我们可以很快看到
像素中出现暗点。

现在,我们
在去除微气泡方面面临的一个挑战

是它们不太合作。

他们喜欢坐在那里,

沐浴在墨中,不动。

但是我们如何把他们踢出去呢?

我们使用的一种技术

是迫使墨水通过
带有多孔壁的细长而微小的管子

然后我们将管子
放在真空室内,

这样气泡就可以
从墨水中挤出

并被去除。

一旦我们设法
从我们生产的墨水中去除气泡

,就该庆祝了。

让我们打开起泡的香槟。

哦,这会很有趣!

(笑声)

哇哦!

(鼓掌)

你可以看到
香槟酒瓶里冒出很多气泡。

这些是
充满二氧化碳

的气泡,二氧化碳是葡萄酒发酵过程中产生的一种气体

让我倒一些。

我不能错过机会。

我想这已经足够了。

(笑声)

在这里,我可以看到很多微气泡

从玻璃底部移动
到香槟顶部。

在它爆开之前,

它会喷射出微小
的香气分子液滴

,增强香槟的味道,

让我们更享受
香槟的味道。

作为一个
对泡泡充满热情的科学家,我喜欢看泡泡,喜欢玩泡泡,

喜欢

研究泡泡。

而且,我喜欢喝它们。

谢谢你。

(掌声)