The neuroscience of imagination Andrey Vyshedskiy

Imagine, for a second,
a duck teaching a French class,

a ping-pong match in orbit
around a black hole,

a dolphin balancing a pineapple.

You probably haven’t actually seen
any of these things,

but you could imagine them instantly.

How does your brain produce an image
of something you’ve never seen?

That may not seem hard,

but that’s only because
we’re so used to doing it.

It turns out that this is actually
a complex problem

that requires sophisticated coordination
inside your brain.

That’s because to create
these new, weird images,

your brain takes familiar pieces
and assembles them in new ways,

like a collage made
from fragments of photos.

The brain has to juggle a sea of thousands
of electrical signals

getting them all to their destination
at precisely the right time.

When you look at an object,

thousands of neurons
in your posterior cortex fire.

These neurons encode various
characteristics of the object:

spiky, fruit, brown, green, and yellow.

This synchronous firing strengthens the
connections between that set of neurons,

linking them together into what’s known
as a neuronal ensemble,

in this case the one for pineapple.

In neuroscience, this is called
the Hebbian principle,

neurons that fire together wire together.

If you try to imagine a pineapple later,

the whole ensemble will light up,
assembling a complete mental image.

Dolphins are encoded by a different
neuronal ensemble.

In fact, every object that you’ve seen

is encoded by a neuronal ensemble
associated with it,

the neurons wired together
by that synchronized firing.

But this principle doesn’t explain
the infinite number of objects

that we can conjure up in our imaginations
without ever seeing them.

The neuronal ensemble for a dolphin
balancing a pineapple doesn’t exist.

So how come you can imagine it anyway?

One hypothesis,
called the Mental Synthesis Theory,

says that, again, timing is key.

If the neuronal ensembles
for the dolphin and pineapple

are activated at the same time,

we can perceive the two separate objects
as a single image.

But something in your brain
has to coordinate that firing.

One plausible candidate
is the prefrontal cortex,

which is involved in
all complex cognitive functions.

Prefrontal cortex neurons are connected
to the posterior cortex

by long, spindly cell extensions
called neural fibers.

The mental synthesis theory proposes
that like a puppeteer pulling the strings,

the prefrontal cortex neurons send
electrical signals

down these neural fibers

to multiple ensembles
in the posterior cortex.

This activates them in unison.

If the neuronal ensembles are turned on
at the same time,

you experience the composite image
just as if you’d actually seen it.

This conscious purposeful synchronization

of different neuronal ensembles
by the prefrontal cortex

is called mental synthesis.

In order for mental sythesis to work,

signals would have to arrive at both
neuronal ensembles at the same time.

The problem is that some neurons

are much farther away
from the prefrontal cortex than others.

If the signals travel down both fibers
at the same rate,

they’d arrive out of sync.

You can’t change the length
of the connections,

but your brain,
especially as it develops in childhood,

does have a way to change
the conduction velocity.

Neural fibers are wrapped in a fatty
substance called myelin.

Myelin is an insulator

and speeds up the electrical signals
zipping down the nerve fiber.

Some neural fibers have
as many as 100 layers of myelin.

Others only have a few.

And fibers with thicker layers of myelin

can conduct signals
100 times faster or more

than those with thinner ones.

Some scientists now think that this
difference in myelination

could be the key
to uniform conduction time in the brain,

and consequently,
to our mental synthesis ability.

A lot of this myelination
happens in childhood,

so from an early age,

our vibrant imaginations may have a lot
to do with building up brains

whose carefully myelinated connections

can craft creative symphonies
throughout our lives.

想象一下,
一只鸭子在教法语课

,在环绕黑洞的轨道上打乒乓球

一只海豚在平衡菠萝。

你可能还没有真正
看到这些东西,

但你可以立即想象它们。

你的大脑如何产生
你从未见过的东西的图像?

这可能看起来并不难,

但这只是因为
我们已经习惯了这样做。

事实证明,这实际上是
一个复杂的问题

,需要
大脑内部进行复杂的协调。

那是因为要创建
这些新的、奇怪的图像,

你的大脑需要熟悉的部分
并以新的方式组合它们,

就像用
照片碎片拼贴一样。

大脑必须处理成千上万个电信号的海洋,

让它们
在正确的时间全部到达目的地。

当你看着一个物体时,

你的后皮层中的数千个神经元会放电。

这些神经元编码
物体的各种特征:

尖刺、水果、棕色、绿色和黄色。

这种同步放电加强了
这组神经元之间的连接,

将它们连接在一起形成
所谓的神经元集合,

在这种情况下是菠萝的集合。

在神经科学中,这被
称为赫布原理,

即一起激发的神经元连接在一起。

如果你稍后试着想象一个菠萝

,整个合奏就会亮起来,
形成一个完整的心理形象。

海豚由不同的
神经元集合编码。

事实上,你看到的每一个物体

都是由一个与之相关的神经元集合编码的

这些神经元
通过同步发射连接在一起。

但是这个原理并不能解释我们可以在想象中想象出来
的无限数量的物体,而这些物体

却从未见过。 平衡菠萝

的海豚的神经元集合
不存在。

那你怎么能想象得到呢?

一种
称为心理综合理论的假设

再次表明,时机是关键。

如果海豚和菠萝的神经元集合

同时被激活,

我们可以将这两个独立的物体感知
为一个图像。

但是你大脑中的某些东西
必须协调这种发射。

一个可能的候选者
是前额叶皮层,

它涉及
所有复杂的认知功能。

前额叶皮层神经元

通过称为神经纤维的长而细长的细胞延伸连接到后皮层

心理综合理论提出
,就像木偶戏手拉线一样,

前额叶皮层神经元将
电信号

沿着这些神经纤维

发送
到后皮层的多个集合。

这会同时激活它们。

如果同时打开神经元集合

您将体验到合成图像,
就像您实际看到它一样。

这种由前额叶皮层有意识地有意识地

同步不同神经元集合

被称为心理合成。

为了使心理综合发挥作用,

信号必须同时到达两个
神经元集合。

问题是一些神经元

比其他神经元离前额叶皮层更远。

如果信号
以相同的速率沿着两条光纤传输,

它们就会不同步到达。

你无法改变
连接的长度,

但你的大脑,
尤其是在儿童时期发育的大脑,

确实有办法
改变传导速度。

神经纤维包裹在一种
叫做髓磷脂的脂肪物质中。

髓磷脂是一种绝缘体

,可以
加速传递神经纤维的电信号。

一些神经纤维有
多达 100 层的髓鞘。

其他人只有几个。

髓磷脂层较厚的纤维

传导信号的
速度比那些较薄的纤维快 100 倍或更多

一些科学家现在认为,
髓鞘形成的这种差异

可能是
大脑中均匀传导时间的关键

,因此也是
我们的心理合成能力的关键。

很多这种髓鞘形成
发生在童年时期,

所以从很小的时候开始,

我们充满活力的想象力可能
与建立大脑有很大关系,这些大脑

的精心髓鞘连接

可以在我们的一生中创作出富有创意的交响乐