The science of hearing Douglas L. Oliver

You hear the gentle lap of waves,

the distant cawing of a seagull.

But then an annoying whine
interrupts the peace,

getting closer, and closer, and closer.

Until…whack!

You dispatch the offending mosquito,
and calm is restored.

How did you detect that noise from afar
and target its maker with such precision?

The ability to recognize sounds
and identify their location

is possible thanks to the auditory system.

That’s comprised of two main parts:
the ear and the brain.

The ear’s task is to convert sound energy
into neural signals;

the brain’s is to receive and process
the information those signals contain.

To understand how that works,

we can follow a sound
on its journey into the ear.

The source of a sound creates vibrations

that travel as waves of pressure
through particles in air,

liquids,

or solids.

But our inner ear, called the cochlea,

is actually filled
with saltwater-like fluids.

So, the first problem to solve
is how to convert those sound waves,

wherever they’re coming from,

into waves in the fluid.

The solution is the eardrum,
or tympanic membrane,

and the tiny bones of the middle ear.

Those convert the large movements
of the eardrum

into pressure waves
in the fluid of the cochlea.

When sound enters the ear canal,

it hits the eardrum and makes it vibrate
like the head of a drum.

The vibrating eardrum jerks a bone
called the hammer,

which hits the anvil and
moves the third bone called the stapes.

Its motion pushes the fluid
within the long chambers of the cochlea.

Once there,

the sound vibrations have finally
been converted into vibrations of a fluid,

and they travel like a wave
from one end of the cochlea to the other.

A surface called the basilar membrane
runs the length of the cochlea.

It’s lined with hair cells that have
specialized components

called stereocilia,

which move with the vibrations of the
cochlear fluid and the basilar membrane.

This movement triggers a signal
that travels through the hair cell,

into the auditory nerve,

then onward to the brain,
which interprets it as a specific sound.

When a sound makes
the basilar membrane vibrate,

not every hair cell moves -

only selected ones,
depending on the frequency of the sound.

This comes down to some fine engineering.

At one end,
the basilar membrane is stiff,

vibrating only in response to short
wavelength, high-frequency sounds.

The other is more flexible,

vibrating only in the presence of longer
wavelength, low-frequency sounds.

So, the noises made by the seagull
and mosquito

vibrate different locations
on the basilar membrane,

like playing different keys on a piano.

But that’s not all that’s going on.

The brain still has another
important task to fulfill:

identifying where a sound is coming from.

For that, it compares the sounds
coming into the two ears

to locate the source in space.

A sound from directly in front of you will
reach both your ears at the same time.

You’ll also hear it at the same intensity
in each ear.

However, a low-frequency sound
coming from one side

will reach the near ear microseconds
before the far one.

And high-frequency sounds will sound
more intense to the near ear

because they’re blocked
from the far ear by your head.

These strands of information
reach special parts of the brainstem

that analyze time and
intensity differences between your ears.

They send the results of their
analysis up to the auditory cortex.

Now, the brain has
all the information it needs:

the patterns of activity
that tell us what the sound is,

and information about
where it is in space.

Not everyone has normal hearing.

Hearing loss is the third most common
chronic disease in the world.

Exposure to loud noises
and some drugs can kill hair cells,

preventing signals from traveling
from the ear to the brain.

Diseases like osteosclerosis freeze
the tiny bones in the ear

so they no longer vibrate.

And with tinnitus,

the brain does strange things

to make us think there’s a sound
when there isn’t one.

But when it does work,

our hearing is an incredible,
elegant system.

Our ears enclose a fine-tuned piece
of biological machinery

that converts the cacophony of vibrations
in the air around us

into precisely tuned electrical impulses

that distinguish claps, taps,
sighs, and flies.

你听到轻轻拍打的海浪

,远处海鸥的叫声。

但随后一阵烦人的哀鸣
打断了平静,

越来越近,越来越近,越来越近。

直到……砰!

你驱散了讨厌的蚊子
,平静又恢复了。

你是如何从远处检测到这种噪音
并如此精确地瞄准它的制造者的? 由于听觉系统

,识别声音
并确定其位置

的能力成为可能。

它由两个主要部分组成
:耳朵和大脑。

耳朵的任务是将声音能量
转化为神经信号;

大脑的任务是接收和处理
这些信号所包含的信息。

要了解它是如何工作的,

我们可以跟踪声音
进入耳朵的过程。

声源产生的振动

以压力波的形式
通过空气、

液体

或固体中的粒子传播。

但我们的内耳,称为耳蜗

,实际上充满
了类似盐水的液体。

因此,要解决的第一个问题
是如何将这些声波(

无论它们来自何处)

转换为流体中的波。

解决方案是鼓膜
或鼓膜,

以及中耳的小骨头。

那些将鼓膜的大运动

转化
为耳蜗液体中的压力波。

当声音进入耳道时,

它会撞击耳膜并使其
像鼓头一样振动。

振动的鼓膜会猛拉
称为锤子的骨头,

它会撞击砧并
移动称为镫骨的第三块骨头。

它的运动推动
耳蜗长腔内的液体。

到达那里后

,声音振动最终
被转换为流体的振动

,它们像波一样
从耳蜗的一端传播到另一端。

称为基底膜的表面
贯穿耳蜗的长度。

它衬有毛细胞,这些毛细胞具有

称为静纤毛的特殊成分,

它们随着
耳蜗液和基底膜的振动而移动。

这种运动触发了一个信号
,该信号穿过毛细胞,

进入听觉神经,

然后再传到大脑,大脑将
其解释为特定的声音。

当声音
使基底膜振动时,

并非每个毛细胞都会移动 - 只有选定的毛细胞会移动


具体取决于声音的频率。

这归结为一些精细的工程。

一方面
,基底膜很硬,

仅在响应
短波长、高频声音时才振动。

另一种更灵活,

仅在存在较长
波长、低频声音的情况下振动。

因此,海鸥和蚊子发出的声音会

振动
基底膜上的不同位置,

就像在钢琴上弹奏不同的琴键一样。

但这还不是全部。

大脑还有另一项
重要任务要完成:

识别声音的来源。

为此,它比较
进入两只耳朵的声音

以定位空间中的声源。

来自您正前方的声音会
同时到达您的双耳。

您还将在每只耳朵中以相同的强度听到它

然而,来自一侧的低频声音


在远侧之前到达近耳微秒。

高频声音
在近耳听起来会更强烈,

因为它们
被你的头部挡住了远耳。

这些信息链
到达脑干的特殊部位

,分析
耳朵之间的时间和强度差异。

他们将
分析结果发送到听觉皮层。

现在,大脑拥有
它需要的所有信息:

告诉我们声音是什么的活动模式,

以及
关于它在太空中位置的信息。

不是每个人都有正常的听力。

听力损失是世界上第三大最常见的
慢性疾病。

暴露在嘈杂的噪音
和一些药物中会杀死毛细胞,

阻止信号
从耳朵传播到大脑。

像骨硬化这样的疾病会冻结
耳朵中的小骨头,

因此它们不再振动。

对于耳鸣

,大脑会做一些奇怪的事情

,让我们在没有声音的
情况下认为有声音。

但是当它起作用时,

我们的听力是一个令人难以置信的
优雅系统。

我们的耳朵里有一个经过微调
的生物机器

,它将
我们周围空气中的不和谐振动转换

为精确调谐的电脉冲

,以区分拍手、敲击、
叹息和苍蝇。