The science of milk Jonathan J. OSullivan

Why do humans drink so much milk?

And given that all mammals lactate,

why do we favor certain types of milk
over others?

Milk is the first thing we drink,

and thanks to developments in the
production and variety of dairy products,

it can take on countless forms for our
dietary and sensory well-being.

Milk’s primary function is as a complete
source of nutrition for newborns.

In fact, since it has all of the vital
nutrients for development and growth,

proteins,

carbohydrates,

fats,

vitamins and minerals,

and water,

milk is the only thing a baby
even needs to ingest

for the first six months of life.

The unique makeup of milk can vary
depending on factors like species,

diet,

and location.

Reindeer of the Arctic Circle,
for example,

make energy-dense milk
that’s about 20% fat,

roughly five times more than human
or cow’s milk,

to help their young survive the harsh,
freezing climate.

So how is milk made?

In the uniquely mammalian process
of lactation,

a special class of milk-secreting cells
known as mammocytes

line up in a single layer around
pear-shaped alveoli.

Those cells absorb all of the building
blocks of milk,

then synthesize tiny droplets of fat

on structures called
smooth endoplasmic reticula.

The droplets combine with each other
and other molecules

and are then expelled and stored
in spaces between cells.

Mammary glands eventually secrete the milk
through the breasts, udders,

or, in the rare case of the platypus,
through ducts in the abdomen.

Although this process is typically
reserved for females,

in some species, like dayak fruit bats,

goats,

and even cats,

males can also lactate.

Milk drinkers worldwide consume
dairy from buffalo,

goats,

sheeps,

camels,

yaks,

horses,

and cows.

Almost all of these species are ruminants,

a type of mammal with
four-chambered stomachs

that yield large quantities of milk.

Of these, cows were the most
easily domesticated

and produce a milk that is both
easily separated into cream and liquid

and has a similar fat content
to human milk.

In their natural environment,

mammals secrete milk on call
for immediate consumption by their young.

But with the demands of thirsty consumers,

the dairy industry has enlisted methods
to step up production,

enhance shelf life,

and provide a variety of milk products.

In the dairy, centrifugation machines
spin milk at high speeds,

forcing less dense fats to separate
from the liquid and float up.

After being skimmed off,

this fat, known as butterfat,
can be used in dairy products

like butter,

cream,

and cheese.

Or it can be later added back to
the liquid in varying proportions

to yield different fat content milks.

Full fat milk, sometimes referred to
as whole milk, has 3.25% butterfat added

compared to 1-2% for low
and reduced fat milk,

and less than half a percent
for skim milk.

To stop reseparation of the fat
from the water, or creaming,

the mixture undergoes the high-energy
pressurized process of homogenization.

Before milk hits the shelves, it’s also
typically heat treated

to reduce its level of microbes,

a government-sanctioned process

that raw milk enthusiasts argue
may reduce milk’s nutritional worth.

Milk spoilage is started by microbes,

which consume and break down
the nutrients in milk.

That process causes butterfat
to clump together,

leading to a visually unpleasant product.

And the byproducts of
the microbes' consumption

are compounds that taste
and smell nasty.

But there’s a bigger problem.

Raw milk can carry microbes that are
the sources of deadly diseases,

so in order to kill as many of those
microbes as possible,

and keep milk fresh longer,

we use a technique called pasteurization.

One version of this process involves
exposing milk

to about 30 seconds of high heat.

Another version,
called ultra-high temperature processing,

or ultra pasteurization,

blasts the milk with considerably higher
temperatures over just a few seconds.

UHT milk boasts a much longer shelf life,

up to twelve months unrefrigerated,

compared to pasteurized milk’s
two weeks in the fridge.

That’s because the higher temperatures
of UHT processing

inactivate far more microbes.

Yet the higher processing temperatures

may adversely affect the nutritional
and sensory properties of the milk.

Ultimately, that choice lies
in the consumer’s taste

and need for convenience.

Fortunately, there are many
choices available

in an industry that produces in excess
of 840 million tons of products each year.

为什么人类喝这么多牛奶?

鉴于所有哺乳动物都有乳酸,

为什么我们偏爱某些类型的牛奶而不是其他类型的牛奶

牛奶是我们喝的第一件事物

,由于
乳制品生产和品种的发展,

它可以为我们的
饮食和感官健康呈现出无数种形式。

牛奶的主要功能是为新生儿提供完整
的营养来源。

事实上,由于它含有
发育和生长所需的所有重要营养素、

蛋白质、

碳水化合物、

脂肪、

维生素和矿物质

以及水,因此

牛奶是婴儿

在生命的前六个月甚至需要摄入的唯一东西。

牛奶的独特成分可能
因品种、

饮食

和地点等因素而异。 例如,

北极圈的驯鹿

生产能量密度高的牛奶
,其脂肪含量约为 20%,

大约是人类
或牛奶的五倍,

以帮助它们的幼崽在严寒、
寒冷的气候中生存。

那么牛奶是怎么做的呢?

在哺乳动物独特
的泌乳过程中,

一种特殊的泌乳细胞
被称为乳腺

细胞,在梨形肺泡周围排列成单层

这些细胞吸收
牛奶的所有组成部分,

然后

在称为
光滑内质网的结构上合成微小的脂肪滴。

液滴相互结合并
与其他分子结合

,然后被排出并储存
在细胞之间的空间中。

乳腺最终
通过乳房、乳房

或在鸭嘴兽的罕见情况下
通过腹部的导管分泌乳汁。

虽然这个过程通常
只为雌性保留,但

在某些物种中,如达雅果蝠、

山羊,

甚至猫,

雄性也可以分泌乳汁。

全世界的牛奶饮用者都食用
来自水牛、

山羊、

绵羊、

骆驼、

牦牛、

和奶牛的奶制品。

几乎所有这些物种都是反刍动物,

一种具有四腔胃的哺乳动物,

可产生大量牛奶。

其中,奶牛是最
容易驯化的,

并且生产的牛奶既
容易分离成奶油和液体

,又具有与人乳相似的脂肪含量

在它们的自然环境中,

哺乳动物根据需要分泌乳汁
供其幼崽立即食用。

但随着口渴消费者的需求

,乳制品行业已经采用
了提高产量、

延长保质期

和提供各种奶制品的方法。

在乳制品中,离心机
高速旋转牛奶,

迫使密度较低的脂肪
从液体中分离出来并漂浮起来。

脱脂后

,这种称为乳脂的脂肪
可用于乳制品,

如黄油、

奶油

和奶酪。

或者,它可以稍后
以不同的比例添加回液体中,

以产生不同脂肪含量的牛奶。

全脂牛奶,有时也
称为全脂牛奶,添加了 3.25% 的乳脂

,而低脂和低脂牛奶的添加量为 1-2%

,脱脂牛奶的添加量不到 0.5%。

为了停止脂肪
从水中的再分离或奶油化

,混合物经过高能
加压均质化过程。

在牛奶上架之前,通常还会对其进行
热处理

以降低其微生物水平,这

是政府批准的过程

,生奶爱好者认为这
可能会降低牛奶的营养价值。

牛奶变质是由微生物引起的,微生物

会消耗并分解
牛奶中的营养物质。

该过程会导致
乳脂结块,

从而产生视觉上令人不快的产品。

微生物消耗的副产品

是味道
和气味难闻的化合物。

但还有一个更大的问题。

生牛奶可能
携带导致致命疾病的微生物,

因此为了尽可能多地杀死这些
微生物,

并让牛奶保持更长时间的新鲜,

我们使用了一种称为巴氏杀菌的技术。

这个过程的一个版本涉及
将牛奶

暴露在大约 30 秒的高温下。

另一个版本,
称为超高温处理

或超巴氏杀菌,

在短短几秒钟内以相当高的温度喷射牛奶。 与巴氏杀菌牛奶在冰箱中的两周相比,

UHT 牛奶的保质期要长得多,

不冷藏时长达 12 个月

这是因为 UHT 处理的更高温度会使

更多的微生物失活。

然而,较高的加工温度

可能会对牛奶的营养
和感官特性产生不利影响。

归根结底,这种选择
取决于消费者的口味

和对便利的需求。

幸运的是,

在这个每年生产超过 8.4 亿吨产品的行业中有很多选择