The science of smog Kim Preshoff

On July 26, 1943,

Los Angeles was blanketed by a thick
gas that stung people’s eyes

and blocked out the Sun.

Panicked residents believed their city
had been attacked using chemical warfare.

But the cloud wasn’t an act of war.

It was smog.

A portmanteau
of smoke and fog,

the word “smog” was coined at the beginning
of the 20th century

to describe the thick gray
haze that covered cities

such as London,

Glasgow,

and Edinburgh.

This industrial smog was known to form

when smoke from coal-burning
home stoves and factories

combined with moisture in the air.

But the smog behind
the LA panic was different.

It was yellowish with a chemical odor.

Since the city didn’t burn much coal,
its cause would remain a mystery

until a chemist named Arie Haagen-Smit
identified two culprits:

volatile organic compounds, or VOCs,

and nitrogen oxides.

VOCs are compounds that easily
become vapors

and may contain elements, such as carbon,

oxygen,

hydrogen,

chlorine,

and sulfur.

Some are naturally produced
by plants and animals,

but others come from manmade sources,

like solvents,

paints,

glues,

and petroleum.

Meanwhile, the incomplete combustion
of gas in motor vehicles

releases nitrogen oxide.

That’s what gives this type of smog
its yellowish color.

VOCs and nitrogen oxide react with sunlight

to produce secondary pollutants called
PANs and tropospheric,

or ground-level, ozone.

PANs and ozone cause eye irritation
and damage lung tissue.

Both are key ingredients
in photochemical smog,

which is what had been plaguing LA.

So why does smog affect some cities
but not others?

Both industrial and photochemical smog
combine manmade pollution

with local weather and geography.

London’s high humidity made it a prime
location for industrial smog.

Photochemical smog is strongest in
urban areas with calm winds

and dry, warm, sunny weather.

The ultraviolet radiation from sunlight
provides the energy necessary

to breakdown molecules that contribute
to smog formation.

Cities surrounded by mountains, like LA,

or lying in a basin, like Beijing,

are also especially vulnerable to smog
since there’s nowhere for it to dissipate.

That’s also partially due to a phenomenon
known as temperature inversion,

where instead of warm air
continuously rising upward,

a pollution-filled layer of air remains
trapped near the Earth’s surface

by a slightly warmer layer above.

Smog isn’t just an aesthetic eyesore.

Both forms of smog irritate the eyes,

nose,

and throat,

exacerbate conditions like asthma
and emphysema,

and increase the risk
of respiratory infections like bronchitis.

Smog can be especially harmful
to young children and older people

and exposure in pregnant women has been
linked to low birth weight

and potential birth defects.

Secondary pollutants found
in photochemical smog

can damage and weaken crops
and decrease yield,

making them more susceptible to insects.

Yet for decades, smog was seen
as the inevitable price of civilization.

Londoners had become accustomed to
the notorious pea soup fog

swirling over their streets until 1952,

when the Great Smog of London shut down
all transportation in the city for days

and caused more
than 4,000 respiratory deaths.

As a result, the Clean Air Act of 1956

banned burning coal in
certain areas of the city,

leading to a massive reduction in smog.

Similarly, regulations on vehicle
emissions and gas content in the US

reduced the volatile compounds in the air
and smog levels along with them.

Smog remains a major problem
around the world.

Countries like China and Poland that
depend on coal for energy

experience high levels of industrial smog.

Photochemical smog and airborne particles
from vehicle emissions

affect many rapidly developing cities,

from Mexico City and Santiago

to New Delhi and Tehran.

Governments have tried many methods
to tackle it,

such as banning cars from driving
for days at a time.

As more than half of the world’s
population crowds into cities,

considering a shift to mass transit
and away from fossil fuels

may allow us to breathe easier.

1943 年 7 月 26 日,

洛杉矶被浓浓的
气体覆盖,刺痛了人们的眼睛

,挡住了太阳。

惊慌失措的居民认为他们的城市
遭到了化学战袭击。

但云不是战争行为。

那是烟雾。

烟雾和雾气的混合体,

“烟雾”这个词是在 20 世纪初创造的,

用来描述
覆盖

伦敦、

格拉斯哥

和爱丁堡等城市的厚厚的灰色烟雾。

众所周知,这种工业烟雾是

由燃煤
家庭炉灶和工厂产生的烟雾

与空气中的水分混合而成的。


洛杉矶恐慌背后的烟雾是不同的。

它呈淡黄色,带有化学气味。

由于这座城市并没有大量燃烧煤炭,
其原因一直是个谜,

直到一位名叫 Arie Haagen-Smit 的化学家
确定了两个罪魁祸首:

挥发性有机化合物或 VOC

和氮氧化物。

VOC 是很容易
变成蒸气的化合物

,可能含有碳、

氧、

氢、

和硫等元素。

有些是
由植物和动物自然产生的,

但有些来自人造来源,

如溶剂、

油漆、

胶水

和石油。

同时,机动车内气体不完全燃烧

会释放出氮氧化物。

这就是这种烟雾
呈淡黄色的原因。

VOC 和氮氧化物与阳光发生反应,

产生称为
PAN 和对流层

或地面臭氧的二次污染物。

PAN 和臭氧会引起眼睛刺激
并损害肺组织。

两者
都是光化学烟雾的关键成分,

而这正是一直困扰洛杉矶的问题。

那么,为什么雾霾会影响一些城市而不影响其他城市
呢?

工业和光化学烟雾都
将人为污染

与当地天气和地理相结合。

伦敦的高湿度使其
成为工业烟雾的主要地点。

城市地区的光化学烟雾最强,风平浪静

,天气干燥、温暖、阳光充足。

来自阳光的紫外线辐射
提供

了分解
导致烟雾形成的分子所需的能量。

像洛杉矶这样被群山环绕的城市

,或者像北京这样地处盆地的城市,

也特别容易受到雾霾的影响,因为雾霾
无处可散。

这也部分是由于一种
被称为温度反转的现象,

在这种现象中,温暖的空气不是
不断向上上升

,而是被污染的空气层
困在地球表面附近,

被上面稍微温暖的层所困。

烟雾不仅仅是一种审美眼光。

两种形式的烟雾都会刺激眼睛、

鼻子

和喉咙,

加剧哮喘
和肺气肿等疾病,

并增加
支气管炎等呼吸道感染的风险。

烟雾
对幼儿和老年人尤其有害

,孕妇接触烟雾
与低出生体重

和潜在的出生缺陷有关。 光化学烟雾中

发现的二次污染物

会损害和削弱作物
,降低产量,

使它们更容易受到昆虫的侵害。

然而几十年来,雾霾一直被
视为文明的必然代价。

伦敦人已经习惯
了臭名昭著的豌豆汤雾

在他们的街道上盘旋,直到 1952

年伦敦的大烟雾关闭
了该市的所有交通工具数天,


导致 4,000 多人死于呼吸道疾病。

因此,1956 年的《清洁空气法》

禁止
在城市的某些地区燃烧煤炭,

从而大幅减少了烟雾。

同样,美国关于车辆
排放和气体含量的法规

降低了空气中的挥发性化合物
和烟雾水平。

烟雾仍然是
世界各地的主要问题。

中国和波兰等
依赖煤炭作为能源的国家

经历了严重的工业烟雾。 来自汽车排放的

光化学烟雾和空气中的颗粒

影响着许多快速发展的城市,

从墨西哥城和圣地亚哥

到新德里和德黑兰。

政府已经尝试了许多方法
来解决这个问题,

例如一次禁止汽车行驶
数天。

随着世界上超过一半的
人口涌入城市,

考虑转向公共交通
并远离化石燃料

可能会让我们呼吸更轻松。