The science of static electricity Anuradha Bhagwat

It can strike without warning,
at any moment.

You may be walking across a soft carpet
and reaching for the door knob

when suddenly…zap!

To understand static electricity,

we first need to know a bit
about the nature of matter.

All matter is made up of atoms

that consist of three
types of smaller particles:

negatively charged electrons,

positively charged protons,

and neutral neutrons.

Normally, the electrons and protons
in an atom balance out,

which is why most matter you come across
is electrically neutral.

But electrons are tiny
and almost insignificant in mass,

and rubbing or friction can give
loosely bound electrons

enough energy to leave their atoms
and attach to others,

migrating between different surfaces.

When this happens,

the first object is left
with more protons than electrons

and becomes positively charged,

while the one with more electrons
accumulates a negative charge.

This situation is called
a charge imbalance,

or net charge separation.

But nature tends towards balance,

so when one of these newly charged bodies
comes into contact with another material,

the mobile electrons
will take the first chance they get

to go where they’re most needed,

either jumping off the negatively
charged object,

or jumping onto
the positively charged one

in an attempt to restore
the neutral charge equilibrium.

And this quick movement of electrons,
called static discharge,

is what we recognize as that sudden spark.

This process doesn’t happen
with just any objects.

Otherwise you’d be getting
zapped all the time.

Conductors like metals and salt water

tend to have loosely
bound outer electrons,

which can easily flow between molecules.

On the other hand, insulators
like plastics, rubber and glass

have tightly bound electrons
that won’t readily jump to other atoms.

Static build-up is most likely to occur

when one of the materials involved
is an insulator.

When you walk across a rug,

electrons from your body
will rub off onto it,

while the rug’s insulating wool
will resist losing its own electrons.

Although your body and the rug
together are still electrically neutral,

there is now a charge polarization
between the two.

And when you reach to touch the door knob,

zap!

The metal door knob’s loosely
bound electrons hop to your hand

to replace the electrons
your body has lost.

When it happens in your bedroom,
it’s a minor nuisance.

But in the great outdoors,

static electricity can be a terrifying,
destructive force of nature.

In certain conditions,
charge separation will occur in clouds.

We don’t know exactly how this happens.

It may have to do with the circulation
of water droplets

and ice particles within them.

Regardless, the charge
imbalance is neutralized

by being released towards another body,

such as a building,

the Earth,

or another cloud in a giant spark
that we know as lightning.

And just as your fingers can be zapped
over and over in the same spot,

you better believe that lightning
can strike the same place more than once.

它可以在任何时候毫无预兆地发动攻击

您可能正在走过柔软的地毯
并伸手去拿门把手

时突然……砰!

要了解静电,

我们首先需要了解一点
物质的性质。

所有物质都由原子组成,

原子由
三种较小的粒子组成:

带负电的电子、

带正电的质子

和中性中子。

通常,原子中的电子和质子会
平衡,

这就是为什么你遇到的大多数物质
都是电中性的。

但是电子很小
,质量几乎微不足道

,摩擦或摩擦可以为
松散结合的电子提供

足够的能量,使其离开原子
并附着在其他原子上,

在不同的表面之间迁移。

当这种情况发生时

,第一个物体留下
的质子多于电子

并带正电,

而拥有更多电子的物体则
积累负电荷。

这种情况
称为电荷不平衡

或净电荷分离。

但自然趋向于平衡,

因此当这些新带电的物体中的一个
与另一种材料接触时

,移动电子
将第一次有机会到达

最需要的地方,

要么从带负
电的物体上跳下来,

要么跳跃
到带正电的那个上,

试图
恢复中性电荷平衡。

这种电子的快速运动,
称为静电放电,

就是我们认为的那种突然的火花。

这个过程不会
发生在任何对象上。

否则你会一直受到
打击。

像金属和盐水这样的导体

往往具有松散
结合的外层电子,

它们很容易在分子之间流动。

另一方面,
塑料、橡胶和玻璃等绝缘体

具有紧密结合的电子
,不会轻易跳到其他原子。

当涉及的材料之一是绝缘体时,最有可能发生静电积聚

当你走过地毯时,

你身上的电子
会摩擦到地毯上,

而地毯的绝缘羊毛
会抵抗失去自己的电子。

尽管您的身体和
地毯仍然是电中性的,

但现在两者之间存在电荷极化

当你伸手去触摸门把手时,

砰!

金属门把手上松散
结合的电子会跳到你的手上,

以取代
你身体失去的电子。

当它发生在你的卧室里时,
这是一个小麻烦。

但在户外,

静电可能是一种可怕的、
破坏性的自然力量。

在某些条件下,
云中会发生电荷分离。

我们不知道这到底是怎么发生的。

这可能与
水滴

和冰粒在其中的循环有关。

无论如何,
电荷不平衡

被释放到另一个物体上,

例如建筑物

、地球

或另一个
我们称为闪电的巨大火花中的云。

就像你的手指可以
在同一个地方一遍又一遍地敲击一样,

你最好相信闪电
可以不止一次地击中同一个地方。