The science of symmetry Colm Kelleher

When you hear the word symmetry,

maybe you picture a simple geometric shape

like a square or a triangle,

or the complex pattern on a butterfly’s wings.

If you are artistically inclined,

you might think of the subtle modulations of a Mozart concerto,

or the effortless poise of a prima ballerina.

When used in every day life,

the word symmetry represents vague notions of

beauty, harmony and balance.

In math and science, symmetry has a different,

and very specific, meaning.

In this technical sense,

a symmetry is the property of an object.

Pretty much any type of object can have symmetry,

from tangible things like butterflies,

to abstract entities like geometric shapes.

So, what does it mean for an object to be symmetric?

Here’s the definition:

a symmetry is a transformation that leaves that object unchanged.

Okay, that sounds a bit abstract, so let’s unpack it.

It will help to look at a particular example,

like this equilateral triangle.

If we rotate our triangle through 120 degrees,

around an access through its center,

we end up with a triangle that’s identical to the original.

In this case, the object is the triangle,

and the transformation that leaves the object unchanged

is rotation through 120 degrees.

So we can say an equilateral triangle is symmetric

with respect to rotations of 120 degrees around its center.

If we rotated the triangle by, say, 90 degrees instead,

the rotated triangle would look different to the original.

In other words, an equilateral triangle is not symmetric

with respect to rotations of 90 degrees around its center.

But why do mathematicians and scientists care about symmetries?

Turns out, they’re essential in many fields of math and science.

Let’s take a close look at one example: symmetry in biology.

You might have noticed that there’s a very familiar kind of symmetry

we haven’t mentioned yet:

the symmetry of the right and left sides of the human body.

The transformation that gives this symmetry is reflection

by an imaginary mirror that slices vertically through the body.

Biologists call this bilateral symmetry.

As with all symmetries found in living things,

it’s only approximate,

but still a striking feature of the human body.

We humans aren’t the only bilaterally symmetric organisms.

Many other animals, foxes, sharks, beetles,

that butterfly we mentioned earlier,

have this kind of symmetry,

as do some plants like orchid flowers.

Other organisms have different symmetries,

ones that only become apparent

when you rotate the organism around its center point.

It’s a lot like the rotational symmetry of the triangle we watched earlier.

But when it occurs in animals,

this kind of symmetry is known as radial symmetry.

For instance, some sea urchins and starfish

have pentaradial or five-fold symmetry,

that is, symmetry with respect to rotations of 72 degrees around their center.

This symmetry also appears in plants,

as you can see for yourself by slicing through an apple horizontally.

Some jellyfish are symmetric with respect to rotations of 90 degrees,

while sea anemones are symmetric when you rotate them at any angle.

Some corals, on the other hand, have no symmetry at all.

They are completely asymmetric.

But why do organisms exhibit these different symmetries?

Does body symmetry tell us anything about an animal’s lifestyle?

Let’s look at one particular group:

bilaterally symmetric animals.

In this camp, we have foxes, beetles, sharks, butterflies,

and, of course, humans.

The thing that unites bilaterally symmetric animals

is that their bodies are designed around movement.

If you want to pick one direction and move that way,

it helps to have a front end

where you can group your sensory organs–

your eyes, ears and nose.

It helps to have your mouth there too

since you’re more likely to run into food

or enemies from this end.

You’re probably familiar with a name for a group of organs,

plus a mouth, mounted on the front of an animal’s body.

It’s called a head.

Having a head leads naturally to the development of bilateral symmetry.

And it also helps you build streamlined fins if you’re a fish,

aerodynamic wings if you’re a bird,

or well coordinated legs for running if you’re a fox.

But, what does this all have to do with evolution?

Turns out, biologists can use these various body symmetries

to figure out which animals are related to which.

For instance, we saw that starfish and sea urchins have five-fold symmetry.

But really what we should have said was

adult starfish and sea urchins.

In their larval stage, they’re bilateral, just like us humans.

For biologists, this is strong evidence

that we’re more closely related to starfish

than we are, to say, corals,

or other animals that don’t exhibit bilateral symmetry

at any stage in their development.

One of the most fascinating and important problems in biology

is reconstructing the tree of life,

discovering when and how the different branches diverged.

Thinking about something as simple as body symmetry

can help us dig far into our evolutionary past

and understand where we, as a species, have come from.

当你听到对称这个词时,

你可能会想到一个简单的几何形状,

比如正方形或三角形,

或者是蝴蝶翅膀上的复杂图案。

如果您有艺术倾向,

您可能会想到莫扎特协奏曲的微妙调制,

或首席芭蕾舞演员的轻松平衡。

当在日常生活中使用时,

对称这个词代表了

美、和谐和平衡的模糊概念。

在数学和科学中,对称有不同的

、非常具体的含义。

在这个技术意义上

,对称性是物体的属性。

几乎任何类型的对象都可以具有对称性,

从蝴蝶等有形物体

到几何形状等抽象实体。

那么,物体对称意味着什么?

定义如下

:对称是保持对象不变的变换。

好的,这听起来有点抽象,所以让我们打开它。

看一个特定的例子会有所帮助,

比如这个等边三角形。

如果我们将三角形旋转 120 度,

围绕通过其中心的通道,

我们最终会得到一个与原始三角形相同的三角形。

在这种情况下,对象是三角形

,保持对象不变的变换

是旋转 120 度。

所以我们可以说等边三角形

关于围绕其中心旋转 120 度是对称的。

如果我们将三角形旋转 90 度

,旋转后的三角形看起来会与原来的不同。

换句话说,等边三角形

关于围绕其中心旋转 90 度是不对称的。

但是为什么数学家和科学家关心对称性呢?

事实证明,它们在数学和科学的许多领域都是必不可少的。

让我们仔细看看一个例子:生物学中的对称性。

你可能已经注意到,有一种

我们还没有提到的非常熟悉

的对称性:人体左右两侧的对称性。

赋予这种对称性的变换是

由垂直穿过身体的假想镜子反射。

生物学家称之为双边对称。

与在生物中发现的所有对称性一样,

它只是近似的,

但仍然是人体的一个显着特征。

我们人类并不是唯一双边对称的生物。

许多其他动物,狐狸,鲨鱼,甲虫,

我们前面提到的蝴蝶,

都具有这种对称性,

兰花等植物也是如此。

其他有机体具有不同的对称性

,只有

当您围绕其中心点旋转有机体时才会变得明显。

这很像我们之前看到的三角形的旋转对称。

但是当它发生在动物身上时,

这种对称性被称为径向对称。

例如,一些海胆和海星

具有五边形或五重

对称性,即相对于围绕其中心旋转 72 度的对称性。

这种对称性也出现在植物中

,您可以通过水平切开苹果来亲眼看到。

有些水母在旋转 90 度

时是对称的,而海葵在任何角度旋转时都是对称的。

另一方面,有些珊瑚根本没有对称性。

它们是完全不对称的。

但是为什么生物会表现出这些不同的对称性呢?

身体对称是否告诉我们有关动物生活方式的任何信息?

让我们看一个特殊的群体:

双边对称的动物。

在这个营地里,我们有狐狸、甲虫、鲨鱼、蝴蝶

,当然还有人类。

将双侧对称的动物结合在一起的

是,它们的身体是围绕运动设计的。

如果你想选择一个方向并朝那个方向移动,

那么有一个前端可以帮助

你将你的感觉器官分组——

你的眼睛、耳朵和鼻子。

有你的嘴也有帮助,

因为你更有可能

从这一端遇到食物或敌人。

您可能熟悉一组器官的名称,

外加一张嘴,安装在动物身体的前面。

这叫做头。

有一个头自然会导致双边对称的发展。

如果你是一条鱼,它还可以帮助你打造流线型的鳍,

如果你是一只鸟,它还可以帮助你打造出空气动力学的翅膀,

或者如果你是一只狐狸,它还可以帮助你打造协调的跑步腿。

但是,这一切与进化有什么关系呢?

事实证明,生物学家可以利用这些不同的身体对称性

来确定哪些动物与哪些动物有关。

例如,我们看到海星和海胆具有五重对称性。

但实际上我们应该说的是

成年海星和海胆。

在它们的幼虫阶段,它们是双边的,就像我们人类一样。

对于生物学家来说,这是强有力的证据

,证明我们与海星的关系

比我们与珊瑚

或其他在发育的任何阶段都没有表现出双边对称性的动物更密切相关

生物学中最引人入胜和最重要的问题之一

是重建生命之树,

发现不同分支何时以及如何分化。

考虑像身体对称这样简单的事情

可以帮助我们深入了解我们的进化历史,

并了解我们作为一个物种来自哪里。