What are gravitational waves Amber L. Stuver

At about six o’clock in the morning
on September 14, 2015,

scientists witnessed something
no human had ever seen:

two black holes colliding.

Both about 30 times as massive
as our Sun,

they had been orbiting each other
for millions of years.

As they got closer together,

they circled each other faster and faster.

Finally, they collided and merged
into a single, even bigger, black hole.

A fraction of a second before their crash,

they sent a vibration across the universe
at the speed of light.

And on Earth, billions of years later,

a detector called the Laser Interferometer
Gravitational Wave Observatory,

or LIGO for short,

picked it up.

The signal only lasted a fifth of a second

and was the detector’s first observation
of gravitational waves.

What are these ripples in space?

The answer starts with gravity,

the force that pulls any
two objects together.

That’s the case for everything
In the observable universe.

You’re pulling on the Earth,
the Moon, the Sun, and every single star,

and they’re pulling on you.

The more mass something has,
the stronger its gravitational pull.

The farther away the object,
the lower its pull.

If every mass has an effect
on every other mass in the universe,

no matter how small,

then changes in gravity can tell us
about what those objects are doing.

Fluctuations in the gravity
coming from the universe

are called gravitational waves.

Gravitational waves move out from
what caused them,

like ripples on a pond,

getting smaller as they travel farther
from their center.

But what are they ripples on?

When Einstein devised
his Theory of Relativity,

he imagined gravity as a curve
in a surface called space-time.

A mass in space creates a depression
in space-time,

and a ball rolling across a depression
will curve

like it’s being attracted
to the other mass.

The bigger the mass,

the deeper the depression
and the stronger the gravity.

When the mass making the depression moves,
that sends out ripples in space-time.

These are gravitationl waves.

What would a gravitational wave feel like?

If our bodies were sensitive enough
to detect them,

we’d feel like we were
being stretched sideways

while being compressed vertically.

And in the next instant,

stretched up and down
while being compressed horizontally,

sideways,

then up and down.

This back and forth would happen
over and over

as the gravitational wave
passed right through you.

But this happens on such a minute scale
that we can’t feel any of it.

So we’ve built detectors
that can feel it for us.

That’s what the LIGO detectors do.

And they’re not the only ones.

There are gravitational wave detectors
spread across the world.

These L-shaped instruments have long arms,

whose exact length
is measured with lasers.

If the length changes, it could be because
gravitational waves are stretching

and compressing the arms.

Once the detectors feel
a gravitational wave,

scientists can extract information
about the wave’s source.

In a way, detectors like LIGO are
big gravitational wave radios.

Radio waves are traveling all around you,
but you can’t feel them

or hear the music they carry.

It takes the right kind of
detector to extract the music.

LIGO detects a gravitational wave signal,

which scientists then study for data
about the object that generated it.

They can derive information,
like its mass and the shape of its orbit.

We can also hear gravitational waves
by playing their signals through speakers,

just like the music a radio extracts
from radio waves.

So those two black holes colliding
sounds like this.

Scientists call this
slide whistle-like noise a chirp,

and it’s the signature of any two
objects orbiting into each other.

The black hole collision
was just one example

of what gravitational waves can tell us.

Other high-energy astronomical events
will leave gravitational echoes, too.

The collapse of a star before it
explodes in a supernova,

or a very dense neutron stars colliding.

Every time we create a new tool
to look at space,

we discover something we didn’t expect,

something that might revolutionize
our understanding of the universe.

LIGO’s no different.

In the short time it’s been on,

LIGO’s already revealed surprises,

like that black holes collide
more often than we ever expected.

It’s impossible to say,
but exciting to imagine,

what revelations may now be propagating
across space

towards our tiny blue planet and
its new way of perceiving the universe.

2015 年 9 月 14 日早上 6 点左右,

科学家们目睹
了人类从未见过的事情:

两个黑洞相撞。

两者的质量大约
是我们太阳的 30 倍,

它们已经相互绕行
了数百万年。

随着他们越来越近,

他们越来越快地绕着彼此转圈。

最后,它们碰撞并合并
成一个更大的黑洞。

在他们坠毁前的几分之一秒,

他们以光速在宇宙中发出了振动

数十亿年后,在地球上,

一个名为激光干涉
引力波天文台(

简称 LIGO)的探测器探测到

了它。

该信号仅持续了五分之一秒

,是探测器首次观测
到引力波。

太空中的这些涟漪是什么?

答案始于引力,

即将任何两个物体拉在一起的力

可观测宇宙中的一切都是如此。

你拉着地球
、月亮、太阳和每一颗星星

,它们也在拉着你。

物体的质量
越大,它的引力就越大。

物体越远,
拉力越低。

如果每个质量都
对宇宙中的所有其他质量产生影响,

无论质量多么小,

那么引力的变化就可以
告诉我们这些物体在做什么。

来自宇宙

的引力波动称为引力波。

引力波
从造成它们的原因中移出,

就像池塘上的涟漪一样,

随着它们离中心越远,引力波就越小

但它们是什么涟漪?

当爱因斯坦设计
他的相对论时,

他把引力想象成一个
叫做时空的曲面中的曲线。

空间中的质量会在时空中产生凹陷

而在凹陷处滚动的球
会弯曲,

就像它被
另一个物体吸引一样。

质量越大,

凹陷越深
,重力越强。

当形成凹陷的物质移动时
,就会在时空中发出涟漪。

这些是引力波。

引力波会是什么感觉?

如果我们的身体足够灵敏,
可以检测到它们,

我们会觉得自己

在被垂直压缩的同时被横向拉伸。

下一瞬间,

上下拉伸,
同时被水平压缩,

侧向,

然后上下。

当引力波
穿过你时,这种来回会一遍又一遍地发生。

但这发生在如此微小的范围内
,以至于我们感觉不到任何。

所以我们建造
了可以让我们感觉到它的探测器。

这就是 LIGO 探测器所做的。

他们不是唯一的。

引力波探测器
遍布世界各地。

这些 L 形仪器有长臂,

其精确长度
是用激光测量的。

如果长度发生变化,可能是因为
引力波正在拉伸

和压缩手臂。

一旦探测器
感觉到引力波,

科学家们就可以提取
有关引力波来源的信息。

在某种程度上,像 LIGO 这样的探测器是
大型引力波无线电。

无线电波在你周围传播,
但你感觉不到它们

或听到它们携带的音乐。

提取音乐需要正确的
检测器。

LIGO 检测到引力波信号

,科学家随后研究该信号以获取
有关产生它的物体的数据。

他们可以获取信息,
比如它的质量和轨道的形状。

我们还可以
通过扬声器播放它们的信号来听到引力波,

就像收音机从无线电波中提取的音乐一样

所以这两个黑洞碰撞的
声音是这样的。

科学家们将这种
类似滑哨的噪音称为啁啾声

,它是任何两个
相互环绕的物体的特征。

黑洞碰撞

只是引力波可以告诉我们的一个例子。

其他高能天文事件
也会留下引力回波。

一颗恒星
在超新星爆炸之前的坍缩,

或一颗非常致密的中子星相撞。

每次我们创造一种观察太空的新工具
时,

我们都会发现一些我们没有预料到的

东西,这些东西可能会彻底改变
我们对宇宙的理解。

LIGO 也不例外。

在它启动的短时间内,

LIGO 已经揭示了一些惊喜,

比如黑洞碰撞
的频率超出了我们的预期。

很难说,
但令人兴奋的是,

现在可能正在

向我们的蓝色小星球
及其感知宇宙的新方式在太空中传播什么启示。