How to build a dark matter detector Jenna Saffin

More than two kilometers below
the surface of northern Ontario,

suspended in 345,000 liters
of ultra-pure water,

there’s a perfect sphere.

It contains 3600 kilograms
of liquid argon,

cooled to -180 degrees Celsius.

Scientists continuously monitor
this chamber from above ground,

looking for a glimmer
of light in the darkness.

Because down here,

deep beneath the Earth’s surface
and cocooned in a watery shield,

that light would indicate the presence of
one of the universe’s greatest mysteries:

dark matter.

All the matter we can see,
planets, stars and galaxies,

doesn’t create enough gravitational pull

to explain
the universe’s larger structure.

It’s dark matter, which is estimated
to make up 25% of the known universe.

But despite its prevalence,

so far we haven’t been able
to detect it directly.

It’s no small challenge.

Dark matter was so named because it
doesn’t interact with any type of light,

visible or otherwise,

which means our usual observation tools

simply don’t work
when trying to observe it.

But while dark matter may not be visible
in the electromagnetic spectrum,

it’s still matter,

so we should be able to measure
its interactions with other matter.

And if our current model
of physics is correct,

billions of sub-atomic
dark matter particles

are passing through
the Earth every second.

Despite the prevalence of dark matter,

its interactions are predicted to be rare
and extremely weak.

To detect these interactions,

dark matter experiments need to be
incredibly sensitive.

With such sensitive equipment,

the ever-present background radiation
on Earth’s surface

would create so much noise in the data

that any dark matter particles
would be completely overwhelmed.

It would be like trying to hear
a pin drop on a busy city street.

To solve this problem,

scientists have had
to dig deep into the Earth.

Dark matter experiments are set up
in specialized underground labs,

either in mines or inside mountains.

The rock that makes up
the Earth’s crust works like a filter,

absorbing radiation
and stopping disruptive particles.

The ultra-pure water
in which the detector is suspended

adds an additional layer
of radiation filtering.

This shielding ensures that only
the particles scientists are looking for

can make their way into the detectors.

Once these particles reach
an experiment’s inner vessel,

scientists have a chance
of detecting them.

The detector media are chosen because
they’re exquisitely sensitive detectors

that can be purified extremely well.

These could be a liquid noble gas,

germanium

and silicon crystals,

a refrigerant,

or other materials.

When radiation interacts,
it leaves tell-tale signs,

such as light or bubbles,

which can be picked up by the sensors
inside the detector.

The detector media are held
in a central chamber made of glass

or a special type of acrylic.

These chambers have to be able
to hold the substance inside

without interacting with it

while withstanding incredible pressure
from the water outside.

The inner vessel is surrounded
by powerful sensors

designed to detect even the
tiniest blips of light,

or the sound vibrations
caused by a single bubble.

Each sensor records data 24/7,

and experiments run for months
and years at a time,

generating terabytes of data every day.

Building dark matter detectors
is as much a feat of engineering

as it is a feat of physics.

By the time an experiment
is ready to start collecting data,

years or decades of work and investment
have already gone into it,

to the tune of tens
of millions of dollars.

As of 2017, no dark matter particles
have been directly detected.

That’s not entirely surprising.

Physicists expect these interactions to be
incredibly rare and difficult to detect.

In the meantime,

scientists continue
to develop new technologies

and increase detector sensitivity,

closing in on where dark matter is hiding.

And when they find it,

we’ll finally be able to bring the
universe’s darkest secrets into the light.

在安大略省北部两公里多的地方,

悬浮在 345,000
升超纯水中,

有一个完美的球体。

它包含3600
公斤液态氩,

冷却到-180摄氏度。

科学家们不断地
从地上监视这个房间

,在黑暗中寻找一丝曙光。

因为在这里,

在地球表面
的深处,被一个水盾包裹着,

那光将表明
宇宙中最大的谜团之一的存在:

暗物质。

我们能看到的所有物质,
行星、恒星和星系,

都没有产生足够的引力


解释宇宙更大的结构。

它是暗物质,
估计占已知宇宙的 25%。

但尽管它很流行,

但到目前为止我们还不能
直接检测到它。

这不是一个小挑战。

暗物质之所以如此命名,是因为它
不与任何类型的

可见光或其他光相互作用,

这意味着我们通常的观察工具

在试图观察它时根本不起作用。

但是,虽然暗物质
在电磁光谱中可能不可见,

但它仍然是物质,

因此我们应该能够测量
它与其他物质的相互作用。

如果我们目前
的物理模型是正确的,那么每秒

有数十亿个亚原子
暗物质粒子

穿过地球。

尽管暗物质普遍存在,

但预计它的相互作用非常罕见
且极其微弱。

为了检测这些相互作用,

暗物质实验需要
非常敏感。

有了这样敏感的设备,

地球表面一直存在的背景辐射

会在数据中产生如此多的噪音,

以至于任何暗物质粒子
都会被完全淹没。

这就像试图
在繁忙的城市街道上听到一根针掉在地上的声音。

为了解决这个问题,

科学家们
不得不深入地球。

暗物质实验是
在专门的地下实验室中进行的,

无论是在矿井里还是在山里。

构成地壳的岩石就像一个过滤器,

吸收辐射
并阻止破坏性粒子。 悬浮探测器

的超纯水

增加了一层额外
的辐射过滤。

这种屏蔽确保只有
科学家正在寻找的粒子

才能进入探测器。

一旦这些粒子
到达实验的内部容器,

科学家就有
机会检测到它们。

选择检测器介质是因为
它们是非常灵敏的检测

器,可以非常好地纯化。

这些可以是液态惰性气体、

和硅晶体

、制冷剂

或其他材料。

当辐射相互作用时,
它会留下明显的迹象,

例如光或气泡,

这些迹象可以被
探测器内部的传感器接收到。

检测器介质保持
在由玻璃或特殊类型的丙烯酸制成的中央腔室中

这些腔室必须
能够在

不与物质相互作用的情况下将物质容纳在内部,

同时承受
来自外部水的难以置信的压力。

内部容器周围环绕
着强大的传感器,这些传感器

旨在检测
最微小的光点,


由单个气泡引起的声音振动。

每个传感器 24/7 全天候记录数据

,实验一次运行数月
甚至数年,

每天产生数 TB 的数据。

建造暗物质探测器
既是一项工程壮举

,也是一项物理学壮举。

当一项
实验准备开始收集数据时,已经

投入了数年或数十年的工作和投资

达到数
千万美元。

截至 2017 年,
还没有直接探测到暗物质粒子。

这并不完全令人惊讶。

物理学家预计这些相互作用
非常罕见且难以检测。

与此同时,

科学家们
继续开发新技术

并提高探测器的灵敏度,以接近

暗物质的藏身之处。

当他们找到它时,

我们终于能够将
宇宙最黑暗的秘密带入光明。