Icelands secret power JeanBaptiste P. Koehl

While the weather in Iceland is
often cold, wet, and windy,

a nearly endless supply of heat bubbles
away below the surface.

In fact, almost every building in the
country is heated by geothermal energy,

in a process with virtually
no carbon emissions.

So how exactly does this renewable energy
work?

Between the Earth’s core and its crust
is a mixed layer

of solid and partially molten rock
called the mantle.

Temperatures here range
from 1,000 to 3,500 degrees Celsius.

Some of this heat comes from the
radioactive decay of metals.

But much of it comes from Earth’s core,

which has been radiating energy
since the planet formed

over four billion years ago.

While the mantle moves slowly,

circulating roughly 40 kilometers
below the Earth’s crust,

there are places where
it surges closer to the surface.

Here, the magma forms pockets
and veins in the ground,

heating underground rivers and pools
to temperatures reaching 300 degrees.

Controlling heated water is at the heart
of harnessing geothermal energy,

and there are two primary models
for how to do it.

One is to build a geothermal power plant

which uses these hot, deep pools
to produce electricity.

First, engineers drill a well several
kilometers into permeable rock

like sandstone or basalt.

As the hot, highly pressurized groundwater
flows into the well,

the rapid change in pressure
and temperature

produces huge amounts of steam.

This steam then turns the blades
of a turbine to generate electricity.

Finally, the remaining cooled water
and condensed steam

are injected back into the ground
to create an open loop

that provides electricity
without losing water.

However, we don’t have to drill this deep
to take advantage of the planet’s heat.

Thanks to solar radiation,

dirt just 1.5 meters deep can reach
temperatures over 20 degrees Celsius.

Geothermal heat pumps pipe water
or antifreeze liquid

through this layer of earth
to siphon its energy.

These liquids are then pumped
through local infrastructure,

dispersing their heat before
moving back through the ground

to absorb more energy.

While external electricity is needed
to operate the pumps,

the energy provided is far greater
than the energy used,

meaning this process is also
a sustainable loop.

In fact, geothermal heat pumps
are both cheaper to operate

and at least two times more energy
efficient than fossil fuel equivalents.

Whether geothermal energy is radiating
just below our feet,

or heating water several kilometers deep,

the planet is constantly radiating heat.

Averaged across one year,

Earth gives off roughly three times more
energy than humanity consumes.

So why does geothermal only account
for 0.2% of humanity’s energy production?

The answer has to do with heat,
location, and cost.

Since geothermal heat pumps rely
on the consistent heat

found in shallow earth,

they can be implemented almost anywhere.

But geothermal power plants require
tapping into

high-temperature geothermal fields;

regions hotter than 180 degrees and
typically several kilometres underground.

These high temperature zones
are hard to find,

and drilling this deep for just one
of the several wells a plant will need

can cost up to $20 million.

There are regions with shallower
geothermal fields.

Iceland and Japan are near active
volcanoes and tectonic plate boundaries,

where magma rises up through the crust.

But these same factors also make
those regions prone to earthquakes,

which can also be triggered
by intensive drilling.

Furthermore, while geothermal energy
is clean and renewable,

it’s not entirely harmless.

Drilling can release vapors containing
pollutants

like methane and hydrogen sulfide.

And drilling tools that use pressurized
water can contaminate groundwater.

Fortunately, new technologies are emerging
to meet these challenges.

Emission control systems
can capture pollutants,

and electromagnetic monitoring can
help detect seismic risks.

We’re also uncovering entirely new
sources of geothermal energy,

like pockets of magma
in mid-ocean volcanoes.

So if we can safely and responsibly tap
into the heat sustaining our planet,

we might be able to sustain
humanity as well.

虽然冰岛的天气
经常寒冷、潮湿和多风

,但几乎无穷无尽的热量会
从地表下冒出。

事实上,该国几乎每座建筑
都使用地热能供暖

,这一过程几乎
没有碳排放。

那么这种可再生能源究竟是如何
工作的呢?

在地核和地壳之间
是一层

固体和部分熔融岩石的混合层,
称为地幔。

这里的温度范围
从 1,000 到 3,500 摄氏度。

其中一些热量来自
金属的放射性衰变。

但其中大部分来自地核,

自地球

40 亿多年前形成以来,地核一直在辐射能量。

虽然地幔移动缓慢,

在地壳下方大约 40 公里处循环,

但有些地方它会在
更靠近地表的地方涌动。

在这里,岩浆在地下形成口袋
和矿脉,

将地下河流和
水池加热到 300 度。

控制热水
是利用地热能的核心

,有两种主要
模型可以做到这一点。

一种是建造一个地热发电厂

,利用这些深热的
水池发电。

首先,工程师在砂岩或玄武岩等
可渗透岩石中钻出几公里的井

当高温、高压的地下水
流入井中时,

压力和温度的快速变化

会产生大量蒸汽。

然后这些蒸汽转动
涡轮机的叶片来发电。

最后,剩余的冷却水
和冷凝蒸汽

被注入地下
,形成一个开环

,在
不损失水的情况下提供电力。

然而,我们不必钻这么深
来利用地球的热量。

由于太阳辐射,

只有 1.5 米深的污垢可以达到
20 摄氏度以上的温度。

地热热泵通过这层地球输送水
或防冻液

以吸收其能量。

然后这些液体被泵送
通过当地的基础设施,


通过地面

返回吸收更多能量之前分散它们的热量。

虽然需要外部电力
来运行泵,

但提供的能量远远
大于使用的能量,

这意味着这个过程也是
一个可持续的循环。

事实上,地热热泵
的运行成本更低

,能源
效率至少是化石燃料的两倍。

无论是地热能
在我们脚下辐射,

还是在数公里深的地方加热水

,地球都在不断地辐射热量。

平均一年,

地球释放的
能量大约是人类消耗的三倍。

那么为什么地热只占
人类能源生产的0.2%呢?

答案与热量、
位置和成本有关。

由于地热热泵依赖

在浅层地球中发现的持续热量,

因此它们几乎可以在任何地方实施。

但是地热发电厂需要
开发

高温地热田;

温度超过 180 度的地区,
通常在地下数公里。

这些高温
区很难找到

,仅为
工厂需要的几口井中的一口钻这么深的井就

可能花费高达 2000 万美元。

有些地区
地热田较浅。

冰岛和日本靠近
活火山和构造板块边界

,岩浆从地壳中升起。

但是这些相同的因素也使
这些地区容易发生地震,

这也可能
由密集的钻探引发。

此外,虽然地热能
是清洁和可再生的,

但它并非完全无害。

钻井会释放出含有

甲烷和硫化氢等污染物的蒸汽。

使用加压
水的钻井工具会污染地下水。

幸运的是,正在出现新技术
来应对这些挑战。

排放控制系统
可以捕获污染物

,电磁监测可以
帮助检测地震风险。

我们还发现了全新
的地热能源,

例如
大洋中部火山中的岩浆袋。

因此,如果我们能够安全、负责任地利用
维持地球的热量,

我们或许也能够维持
人类的生存。