Math can help uncover cancers secrets Irina Kareva

I am a translator.

I translate from biology into mathematics

and vice versa.

I write mathematical models

which, in my case, are systems
of differential equations,

to describe biological mechanisms,

such as cell growth.

Essentially, it works like this.

First, I identify the key elements

that I believe may be driving
behavior over time

of a particular mechanism.

Then, I formulate assumptions

about how these elements
interact with each other

and with their environment.

It may look something like this.

Then, I translate
these assumptions into equations,

which may look something like this.

Finally, I analyze my equations

and translate the results back
into the language of biology.

A key aspect of mathematical modeling

is that we, as modelers,
do not think about what things are;

we think about what they do.

We think about relationships
between individuals,

whether they be cells, animals or people,

and how they interact with each other
and with their environment.

Let me give you an example.

What do foxes and immune cells
have in common?

They’re both predators,

except foxes feed on rabbits,

and immune cells feed on invaders,
such as cancer cells.

But from a mathematical point of view,

a qualitatively same system
of predator-prey type equations

will describe interactions
between foxes and rabbits

and cancer and immune cells.

Predator-prey type systems
have been studied extensively

in scientific literature,

describing interactions
of two populations,

where survival of one depends
on consuming the other.

And these same equations
provide a framework

for understanding
cancer-immune interactions,

where cancer is the prey,

and the immune system is the predator.

And the prey employs all sorts of tricks
to prevent the predator from killing it,

ranging from camouflaging itself

to stealing the predator’s food.

This can have some very
interesting implications.

For example, despite enormous successes
in the field of immunotherapy,

there still remains
somewhat limited efficacy

when it comes solid tumors.

But if you think about it ecologically,

both cancer and immune cells –

the prey and the predator –

require nutrients
such as glucose to survive.

If cancer cells outcompete
the immune cells for shared nutrients

in the tumor microenvironment,

then the immune cells will physically
not be able to do their job.

This predator-prey-shared
resource type model

is something I’ve worked on
in my own research.

And it was recently shown experimentally

that restoring the metabolic balance
in the tumor microenvironment –

that is, making sure
immune cells get their food –

can give them, the predators, back
their edge in fighting cancer, the prey.

This means that if you abstract a bit,

you can think about cancer itself
as an ecosystem,

where heterogeneous populations of cells
compete and cooperate

for space and nutrients,

interact with predators –
the immune system –

migrate – metastases –

all within the ecosystem
of the human body.

And what do we know about most
ecosystems from conservation biology?

That one of the best ways
to extinguish species

is not to target them directly

but to target their environment.

And so, once we have identified
the key components

of the tumor environment,

we can propose hypotheses

and simulate scenarios
and therapeutic interventions

all in a completely safe
and affordable way

and target different components
of the microenvironment

in such a way as to kill the cancer
without harming the host,

such as me or you.

And so while the immediate
goal of my research

is to advance research and innovation

and to reduce its cost,

the real intent, of course,
is to save lives.

And that’s what I try to do

through mathematical modeling
applied to biology,

and in particular,
to the development of drugs.

It’s a field that until relatively
recently has remained somewhat marginal,

but it has matured.

And there are now very well-developed
mathematical methods,

a lot of preprogrammed tools,

including free ones,

and an ever-increasing amount
of computational power available to us.

The power and beauty
of mathematical modeling

lies in the fact
that it makes you formalize,

in a very rigorous way,

what we think we know.

We make assumptions,

translate them into equations,

run simulations,

all to answer the question:

In a world where my assumptions are true,

what do I expect to see?

It’s a pretty simple conceptual framework.

It’s all about asking the right questions.

But it can unleash numerous opportunities
for testing biological hypotheses.

If our predictions match our observations,

great! – we got it right,
so we can make further predictions

by changing this or that
aspect of the model.

If, however, our predictions
do not match our observations,

that means that some
of our assumptions are wrong,

and so our understanding
of the key mechanisms

of underlying biology

is still incomplete.

Luckily, since this is a model,

we control all the assumptions.

So we can go through them, one by one,

identifying which one or ones
are causing the discrepancy.

And then we can fill this newly
identified gap in knowledge

using both experimental
and theoretical approaches.

Of course, any ecosystem
is extremely complex,

and trying to describe all the moving
parts is not only very difficult,

but also not very informative.

There’s also the issue of timescales,

because some processes take place
on a scale of seconds, some minutes,

some days, months and years.

It may not always be possible
to separate those out experimentally.

And some things happen
so quickly or so slowly

that you may physically
never be able to measure them.

But as mathematicians,

we have the power to zoom in
on any subsystem in any timescale

and simulate effects of interventions

that take place in any timescale.

Of course, this isn’t the work
of a modeler alone.

It has to happen in close
collaboration with biologists.

And it does demand
some capacity of translation

on both sides.

But starting with a theoretical
formulation of a problem

can unleash numerous opportunities
for testing hypotheses

and simulating scenarios
and therapeutic interventions,

all in a completely safe way.

It can identify gaps in knowledge
and logical inconsistencies

and can help guide us
as to where we should keep looking

and where there may be a dead end.

In other words:

mathematical modeling
can help us answer questions

that directly affect people’s health –

that affect each
person’s health, actually –

because mathematical modeling will be key

to propelling personalized medicine.

And it all comes down
to asking the right question

and translating it
to the right equation …

and back.

Thank you.

(Applause)

我是一名翻译。

我从生物学翻译成数学

,反之亦然。

我编写数学

模型,就我而言,它们
是微分方程系统,

用于描述生物机制,

例如细胞生长。

本质上,它是这样工作的。

首先,我确定了

我认为可能会
随着时间的

推移驱动特定机制的行为的关键因素。

然后,我

对这些元素如何
相互作用

以及如何与它们的环境相互作用提出假设。

它可能看起来像这样。

然后,我将
这些假设转化为方程式

,可能看起来像这样。

最后,我分析我的方程式

并将结果翻译
回生物学语言。

数学建模的一个关键方面

是,作为建模者,
我们不去思考事物是什么。

我们考虑他们的所作所为。

我们考虑
个体之间的关系,

无论是细胞、动物还是人,

以及它们如何相互作用
以及与环境相互作用。

让我给你举个例子。

狐狸和免疫细胞
有什么共同点?

它们都是捕食者,

除了狐狸以兔子为食

,免疫细胞以入侵者为食,
例如癌细胞。

但从数学的角度来看,

一个定性相同
的捕食者-猎物类型方程系统

将描述
狐狸和兔子

以及癌症和免疫细胞之间的相互作用。

捕食者-猎物类型系统

在科学文献中进行了广泛研究,

描述
了两个种群的相互作用,

其中一个种群的生存
取决于消耗另一个种群。

这些相同的方程式

为理解
癌症-免疫相互作用提供了一个框架,

其中癌症是猎物,

而免疫系统是捕食者。

猎物使用各种技巧
来阻止捕食者杀死它,

从伪装自己

到偷走捕食者的食物。

这可能会产生一些非常
有趣的影响。

例如,尽管
在免疫治疗领域取得了巨大成功,但在实体瘤方面的疗效

仍然
有限

但如果你从生态学角度考虑

,癌症和免疫细胞

——猎物和捕食者——

都需要
葡萄糖等营养物质才能生存。

如果癌细胞
在肿瘤微环境中与免疫细胞竞争共享的营养物质

那么免疫细胞在物理上将
无法完成它们的工作。

这种捕食者-猎物共享
资源类型模型

是我
在自己的研究中研究的。

最近的实验

表明,恢复
肿瘤微环境中的代谢平衡——

也就是说,确保
免疫细胞得到它们的食物——

可以让它们,捕食者,
在对抗癌症的过程中恢复优势,也就是猎物。

这意味着,如果你稍微抽象一下,

你可以把癌症本身想象
成一个生态系统,

其中异质细胞群
竞争和合作

以获得空间和营养,

与捕食者相互作用
——免疫系统——

迁移——转移——

所有这些都在 人体的生态系统

我们对
保护生物学中的大多数生态系统了解多少?

消灭物种的最佳方法之一

不是直接针对它们,

而是针对它们的环境。

因此,一旦我们确定
了肿瘤环境的关键组成

部分,

我们就可以提出假设

并模拟情景
和治疗干预,

所有这些都以一种完全安全
且负担得起的方式进行,

并针对
微环境的不同组成部分

,从而在不致死的情况下杀死癌症。
伤害宿主,

例如我或你。

因此,虽然
我研究的直接目标

是推进研究和创新

并降低成本

,但真正的目的当然
是拯救生命。

这就是我试图

通过
应用于生物学

,特别
是药物开发的数学模型来做的事情。

这是一个
直到最近还处于边缘地位的领域,

但它已经成熟。

现在有非常完善的
数学方法

,许多预编程的工具,

包括免费的工具,

以及越来越多
的计算能力可供我们使用。 数学建模

的力量和美妙


在于它让你

以一种非常严格的方式

将我们认为我们知道的东西形式化。

我们做出假设,

将它们转化为方程式,

运行模拟,

所有这些都是为了回答这个问题:

在一个我的假设是真实的世界里,

我期望看到什么?

这是一个非常简单的概念框架。

一切都是为了提出正确的问题。

但它可以
为检验生物学假设提供大量机会。

如果我们的预测与我们的观察相符,那就

太好了! ——我们做对了,
所以我们可以

通过改变模型的这个或那个
方面来做出进一步的预测。

然而,如果我们的预测
与我们的观察不符,

这意味着我们的
一些假设是错误的

,因此我们对潜在生物学
关键机制的理解

仍然不完整。

幸运的是,由于这是一个模型,

我们控制了所有假设。

因此,我们可以逐一检查它们,

确定是哪一个或哪一个
导致了差异。

然后我们可以使用实验和理论方法来填补这个新
发现的知识空白

当然,任何生态系统
都是极其复杂的

,试图描述所有的活动
部分不仅非常困难,

而且信息量也不大。

还有时间尺度的问题,

因为有些过程发生
在几秒钟、几分钟

、几天、几个月和几年的尺度上。

可能并不总是可以通过
实验将它们分开。

有些事情发生得
如此之快或如此之慢

,以至于你可能
永远无法测量它们。

但作为数学家,

我们有能力
在任何时间尺度上放大任何子系统,

并模拟

在任何时间尺度上发生的干预效果。

当然,这
不仅仅是建模师的工作。

它必须与生物学家密切
合作。

它确实需要双方都有
一定的翻译能力

但是,从一个问题的理论表述开始,

可以释放大量机会
来测试假设

、模拟情景
和治疗干预,

所有这些都以一种完全安全的方式进行。

它可以识别知识上的空白
和逻辑上的不一致,

并可以帮助指导
我们应该继续寻找

的地方以及可能存在死胡同的地方。

换句话说:

数学建模
可以帮助我们

回答直接影响人们健康的问题——

实际上影响每个
人的健康——

因为数学建模将是

推动个性化医疗的关键。

这一切都归结
为提出正确的问题

并将其
转化为正确的方程式……

然后返回。

谢谢你。

(掌声)