The mathematical secrets of Pascals triangle Wajdi Mohamed Ratemi

This may look like a neatly arranged
stack of numbers,

but it’s actually
a mathematical treasure trove.

Indian mathematicians called it
the Staircase of Mount Meru.

In Iran, it’s the Khayyam Triangle.

And in China, it’s Yang Hui’s Triangle.

To much of the Western world,
it’s known as Pascal’s Triangle

after French mathematician Blaise Pascal,

which seems a bit unfair
since he was clearly late to the party,

but he still had a lot to contribute.

So what is it about this that has so
intrigued mathematicians the world over?

In short,
it’s full of patterns and secrets.

First and foremost, there’s the pattern
that generates it.

Start with one and imagine invisible
zeros on either side of it.

Add them together in pairs,
and you’ll generate the next row.

Now, do that again and again.

Keep going and you’ll wind up
with something like this,

though really Pascal’s Triangle
goes on infinitely.

Now, each row corresponds to what’s called
the coefficients of a binomial expansion

of the form (x+y)^n,

where n is the number of the row,

and we start counting from zero.

So if you make n=2 and expand it,

you get (x^2) + 2xy + (y^2).

The coefficients,
or numbers in front of the variables,

are the same as the numbers in that row
of Pascal’s Triangle.

You’ll see the same thing with n=3,
which expands to this.

So the triangle is a quick and easy way
to look up all of these coefficients.

But there’s much more.

For example, add up
the numbers in each row,

and you’ll get successive powers of two.

Or in a given row, treat each number
as part of a decimal expansion.

In other words, row two is
(1x1) + (2x10) + (1x100).

You get 121, which is 11^2.

And take a look at what happens
when you do the same thing to row six.

It adds up to 1,771,561,
which is 11^6, and so on.

There are also geometric applications.

Look at the diagonals.

The first two aren’t very interesting:
all ones, and then the positive integers,

also known as natural numbers.

But the numbers in the next diagonal
are called the triangular numbers

because if you take that many dots,

you can stack them
into equilateral triangles.

The next diagonal
has the tetrahedral numbers

because similarly, you can stack
that many spheres into tetrahedra.

Or how about this:
shade in all of the odd numbers.

It doesn’t look like much
when the triangle’s small,

but if you add thousands of rows,

you get a fractal
known as Sierpinski’s Triangle.

This triangle isn’t just
a mathematical work of art.

It’s also quite useful,

especially when it comes
to probability and calculations

in the domain of combinatorics.

Say you want to have five children,

and would like to know the probability

of having your dream family
of three girls and two boys.

In the binomial expansion,

that corresponds
to girl plus boy to the fifth power.

So we look at the row five,

where the first number
corresponds to five girls,

and the last corresponds to five boys.

The third number
is what we’re looking for.

Ten out of the sum
of all the possibilities in the row.

so 10/32, or 31.25%.

Or, if you’re randomly
picking a five-player basketball team

out of a group of twelve friends,

how many possible groups
of five are there?

In combinatoric terms, this problem would
be phrased as twelve choose five,

and could be calculated with this formula,

or you could just look at the sixth
element of row twelve on the triangle

and get your answer.

The patterns in Pascal’s Triangle

are a testament to the elegantly
interwoven fabric of mathematics.

And it’s still revealing fresh secrets
to this day.

For example, mathematicians recently
discovered a way to expand it

to these kinds of polynomials.

What might we find next?

Well, that’s up to you.

这可能看起来像一堆排列整齐
的数字,

但它实际上是
一个数学宝库。

印度数学家称它为
梅鲁山的阶梯。

在伊朗,它是海亚姆三角。

而在中国,则是杨辉三角。

对于西方世界的大部分人来说,
它以法国数学家布莱斯帕斯卡的名字命名为帕斯卡三角

这似乎有点不公平,
因为他显然迟到了,

但他仍然有很多贡献。

那么,是什么让
全世界的数学家如此感兴趣呢?

简而言之,
它充满了模式和秘密。

首先,
是生成它的模式。

从一个开始,想象
它两侧的隐形零。

将它们成对添加在一起
,您将生成下一行。

现在,一次又一次地这样做。

继续前进,你会
得到这样的结果,

尽管帕斯卡三角实际上
是无限的。

现在,每一行对应于所谓的

(x+y)^n 形式的二项式展开系数,

其中 n 是行数

,我们从零开始计数。

所以如果你让 n=2 并展开它,

你会得到 (x^2) + 2xy + (y^2)。

变量前面的系数或数字与帕斯卡三角形

那一行中的数字相同

在 n=3 时,您会看到同样的情况,
并扩展到此。

所以三角形是
查找所有这些系数的快速简便的方法。

但还有更多。

例如,将
每行中的数字相加

,您将得到 2 的连续幂。

或者在给定的行中,将每个数字
视为十进制扩展的一部分。

换句话说,第二行是
(1x1) + (2x10) + (1x100)。

你得到 121,即 11^2。

看看
当你对第六排做同样的事情时会发生什么。

它加起来是 1,771,561,
即 11^6,依此类推。

还有几何应用。

看对角线。

前两个不是很有趣:
全是,然后是正整数,

也称为自然数。

但是下一个对角线
上的数字被称为三角形数字,

因为如果你取那么多点,

你可以把它们堆叠
成等边三角形。

下一个对角线
具有四面体数,

因为类似地,您可以将
那么多球体堆叠成四面体。

或者这样怎么样:
遮蔽所有奇数。

当三角形很小时,它看起来并不多,

但是如果添加数千行

,就会得到一个
称为谢尔宾斯基三角形的分形。

这个三角形不仅仅是
一件数学艺术品。

它也非常有用,

尤其是在

组合数学领域的概率和计算方面。

假设您想要五个孩子,

并且想知道

拥有
三个女孩和两个男孩的梦想家庭的概率。

在二项式展开中,

这对应
于女孩加男孩的五次方。

所以我们看第五行

,第一个数字
对应五个女孩

,最后一个数字对应五个男孩。

第三个数字
是我们正在寻找的。

行中所有可能性的总和中的十个。

所以 10/32,或 31.25%。

或者,如果你

从十二个朋友中随机挑选一个五人篮球队,

那么有多少个可能
的五人组?

用组合术语来说,这个问题
可以表述为十二选五

,可以用这个公式计算,

或者你可以只看
三角形上第十二行的第六个元素

并得到答案。

帕斯卡三角形

中的图案证明了数学的优雅
交织结构。

直到今天,它仍在揭示新的
秘密。

例如,数学家最近
发现了一种将其扩展

到这些多项式的方法。

我们接下来会发现什么?

好吧,这取决于你。