The secrets I find on the mysterious ocean floor Laura Robinson

Well, I’m an ocean chemist.

I look at the chemistry
of the ocean today.

I look at the chemistry
of the ocean in the past.

The way I look back in the past

is by using the fossilized remains
of deepwater corals.

You can see an image of one
of these corals behind me.

It was collected from close to Antarctica,
thousands of meters below the sea,

so, very different
than the kinds of corals

you may have been lucky enough to see
if you’ve had a tropical holiday.

So I’m hoping that this talk will give you

a four-dimensional view of the ocean.

Two dimensions, such as this
beautiful two-dimensional image

of the sea surface temperature.

This was taken using satellite,
so it’s got tremendous spatial resolution.

The overall features are extremely
easy to understand.

The equatorial regions are warm
because there’s more sunlight.

The polar regions are cold
because there’s less sunlight.

And that allows big icecaps
to build up on Antarctica

and up in the Northern Hemisphere.

If you plunge deep into the sea,
or even put your toes in the sea,

you know it gets colder as you go down,

and that’s mostly because the deep waters
that fill the abyss of the ocean

come from the cold polar regions
where the waters are dense.

If we travel back in time
20,000 years ago,

the earth looked very much different.

And I’ve just given you a cartoon version
of one of the major differences

you would have seen
if you went back that long.

The icecaps were much bigger.

They covered lots of the continent,
and they extended out over the ocean.

Sea level was 120 meters lower.

Carbon dioxide [levels] were very
much lower than they are today.

So the earth was probably about three
to five degrees colder overall,

and much, much colder
in the polar regions.

What I’m trying to understand,

and what other colleagues of mine
are trying to understand,

is how we moved from that
cold climate condition

to the warm climate condition
that we enjoy today.

We know from ice core research

that the transition from these
cold conditions to warm conditions

wasn’t smooth, as you might predict
from the slow increase in solar radiation.

And we know this from ice cores,
because if you drill down into ice,

you find annual bands of ice,
and you can see this in the iceberg.

You can see those blue-white layers.

Gases are trapped in the ice cores,
so we can measure CO2 –

that’s why we know CO2
was lower in the past –

and the chemistry of the ice
also tells us about temperature

in the polar regions.

And if you move in time
from 20,000 years ago to the modern day,

you see that temperature increased.

It didn’t increase smoothly.

Sometimes it increased very rapidly,

then there was a plateau,

then it increased rapidly.

It was different in the two polar regions,

and CO2 also increased in jumps.

So we’re pretty sure the ocean
has a lot to do with this.

The ocean stores huge amounts of carbon,

about 60 times more
than is in the atmosphere.

It also acts to transport heat
across the equator,

and the ocean is full of nutrients
and it controls primary productivity.

So if we want to find out
what’s going on down in the deep sea,

we really need to get down there,

see what’s there

and start to explore.

This is some spectacular footage
coming from a seamount

about a kilometer deep
in international waters

in the equatorial Atlantic, far from land.

You’re amongst the first people
to see this bit of the seafloor,

along with my research team.

You’re probably seeing new species.

We don’t know.

You’d have to collect the samples
and do some very intense taxonomy.

You can see beautiful bubblegum corals.

There are brittle stars
growing on these corals.

Those are things that look
like tentacles coming out of corals.

There are corals made of different forms
of calcium carbonate

growing off the basalt of this
massive undersea mountain,

and the dark sort of stuff,
those are fossilized corals,

and we’re going to talk
a little more about those

as we travel back in time.

To do that, we need
to charter a research boat.

This is the James Cook,
an ocean-class research vessel

moored up in Tenerife.

Looks beautiful, right?

Great, if you’re not a great mariner.

Sometimes it looks
a little more like this.

This is us trying to make sure
that we don’t lose precious samples.

Everyone’s scurrying around,
and I get terribly seasick,

so it’s not always a lot of fun,
but overall it is.

So we’ve got to become
a really good mapper to do this.

You don’t see that kind of spectacular
coral abundance everywhere.

It is global and it is deep,

but we need to really find
the right places.

We just saw a global map,
and overlaid was our cruise passage

from last year.

This was a seven-week cruise,

and this is us, having made our own maps

of about 75,000 square kilometers
of the seafloor in seven weeks,

but that’s only a tiny fraction
of the seafloor.

We’re traveling from west to east,

over part of the ocean that would
look featureless on a big-scale map,

but actually some of these mountains
are as big as Everest.

So with the maps that we make on board,

we get about 100-meter resolution,

enough to pick out areas
to deploy our equipment,

but not enough to see very much.

To do that, we need to fly
remotely-operated vehicles

about five meters off the seafloor.

And if we do that, we can get maps
that are one-meter resolution

down thousands of meters.

Here is a remotely-operated vehicle,

a research-grade vehicle.

You can see an array
of big lights on the top.

There are high-definition cameras,
manipulator arms,

and lots of little boxes and things
to put your samples.

Here we are on our first dive
of this particular cruise,

plunging down into the ocean.

We go pretty fast to make sure
the remotely operated vehicles

are not affected by any other ships.

And we go down,

and these are the kinds of things you see.

These are deep sea sponges, meter scale.

This is a swimming holothurian –
it’s a small sea slug, basically.

This is slowed down.

Most of the footage I’m showing
you is speeded up,

because all of this takes a lot of time.

This is a beautiful holothurian as well.

And this animal you’re going to see
coming up was a big surprise.

I’ve never seen anything like this
and it took us all a bit surprised.

This was after about 15 hours of work
and we were all a bit trigger-happy,

and suddenly this giant
sea monster started rolling past.

It’s called a pyrosome
or colonial tunicate, if you like.

This wasn’t what we were looking for.

We were looking for corals,
deep sea corals.

You’re going to see a picture
of one in a moment.

It’s small, about five centimeters high.

It’s made of calcium carbonate,
so you can see its tentacles there,

moving in the ocean currents.

An organism like this probably lives
for about a hundred years.

And as it grows, it takes in
chemicals from the ocean.

And the chemicals,
or the amount of chemicals,

depends on the temperature;
it depends on the pH,

it depends on the nutrients.

And if we can understand how
these chemicals get into the skeleton,

we can then go back,
collect fossil specimens,

and reconstruct what the ocean
used to look like in the past.

And here you can see us collecting
that coral with a vacuum system,

and we put it into a sampling container.

We can do this very
carefully, I should add.

Some of these organisms live even longer.

This is a black coral called Leiopathes,
an image taken by my colleague,

Brendan Roark, about 500
meters below Hawaii.

Four thousand years is a long time.

If you take a branch from one
of these corals and polish it up,

this is about 100 microns across.

And Brendan took some analyses
across this coral –

you can see the marks –

and he’s been able to show
that these are actual annual bands,

so even at 500 meters deep in the ocean,

corals can record seasonal changes,

which is pretty spectacular.

But 4,000 years is not enough to get
us back to our last glacial maximum.

So what do we do?

We go in for these fossil specimens.

This is what makes me really unpopular
with my research team.

So going along,

there’s giant sharks everywhere,

there are pyrosomes,
there are swimming holothurians,

there’s giant sponges,

but I make everyone go down
to these dead fossil areas

and spend ages kind of shoveling
around on the seafloor.

And we pick up all these corals,
bring them back, we sort them out.

But each one of these is a different age,

and if we can find out how old they are

and then we can measure
those chemical signals,

this helps us to find out

what’s been going on
in the ocean in the past.

So on the left-hand image here,

I’ve taken a slice through a coral,
polished it very carefully

and taken an optical image.

On the right-hand side,

we’ve taken that same piece of coral,
put it in a nuclear reactor,

induced fission,

and every time there’s some decay,

you can see that marked out in the coral,

so we can see the uranium distribution.

Why are we doing this?

Uranium is a very poorly regarded element,

but I love it.

The decay helps us find out
about the rates and dates

of what’s going on in the ocean.

And if you remember from the beginning,

that’s what we want to get at
when we’re thinking about climate.

So we use a laser to analyze uranium

and one of its daughter products,
thorium, in these corals,

and that tells us exactly
how old the fossils are.

This beautiful animation
of the Southern Ocean

I’m just going to use illustrate
how we’re using these corals

to get at some of the ancient
ocean feedbacks.

You can see the density
of the surface water

in this animation by Ryan Abernathey.

It’s just one year of data,

but you can see how dynamic
the Southern Ocean is.

The intense mixing,
particularly the Drake Passage,

which is shown by the box,

is really one of the strongest
currents in the world

coming through here,
flowing from west to east.

It’s very turbulently mixed,

because it’s moving over those
great big undersea mountains,

and this allows CO2 and heat to exchange
with the atmosphere in and out.

And essentially, the oceans are breathing
through the Southern Ocean.

We’ve collected corals from back and forth
across this Antarctic passage,

and we’ve found quite a surprising thing
from my uranium dating:

the corals migrated from south to north

during this transition from the glacial
to the interglacial.

We don’t really know why,

but we think it’s something
to do with the food source

and maybe the oxygen in the water.

So here we are.

I’m going to illustrate what I think
we’ve found about climate

from those corals in the Southern Ocean.

We went up and down sea mountains.
We collected little fossil corals.

This is my illustration of that.

We think back in the glacial,

from the analysis
we’ve made in the corals,

that the deep part of the Southern Ocean
was very rich in carbon,

and there was a low-density
layer sitting on top.

That stops carbon dioxide
coming out of the ocean.

We then found corals
that are of an intermediate age,

and they show us that the ocean mixed
partway through that climate transition.

That allows carbon to come
out of the deep ocean.

And then if we analyze corals
closer to the modern day,

or indeed if we go down there today anyway

and measure the chemistry of the corals,

we see that we move to a position
where carbon can exchange in and out.

So this is the way
we can use fossil corals

to help us learn about the environment.

So I want to leave you
with this last slide.

It’s just a still taken out of that first
piece of footage that I showed you.

This is a spectacular coral garden.

We didn’t even expect
to find things this beautiful.

It’s thousands of meters deep.

There are new species.

It’s just a beautiful place.

There are fossils in amongst,

and now I’ve trained you
to appreciate the fossil corals

that are down there.

So next time you’re lucky enough
to fly over the ocean

or sail over the ocean,

just think – there are massive
sea mountains down there

that nobody’s ever seen before,

and there are beautiful corals.

Thank you.

(Applause)

嗯,我是海洋化学家。

我今天看看海洋的化学成分


过去研究海洋的化学成分。

我回顾过去的方式

是使用
深水珊瑚的化石残骸。

你可以
在我身后看到其中一个珊瑚的图像。

它是从靠近南极洲的地方收集的,距离
海底数千米,

因此,与

您可能有幸看到
您是否度过热带假期的珊瑚种类非常不同。

所以我希望这个演讲能给你

一个海洋的四维视图。

二维,比如这张
美丽

的海面温度二维图像。

这是使用卫星拍摄的,
因此它具有巨大的空间分辨率。

整体功能非常
容易理解。

赤道地区温暖,
因为有更多的阳光。

极地地区很冷,
因为阳光较少。

这使得大冰盖
可以在南极洲

和北半球形成。

如果你深入海里,
甚至把脚趾伸进海里,

你就会知道越往下越冷

,这主要是
因为充满海洋深渊的深水

来自寒冷的
极地水域。 是稠密的。

如果我们穿越到
20,000 年前

,地球看起来就大不相同了。

我刚刚给了你一个卡通版本

如果你回去那么久你会看到的主要差异之一。

冰盖要大得多。

它们覆盖了大陆的大部分地区,
并延伸到海洋上空。

海平面低了120米。

二氧化碳[水平]
比今天低得多。

所以地球总体上可能
要冷三到五度


在极地地区要冷得多。

我想要理解的,

以及我的其他同事
想要理解的

是,我们是如何从
寒冷的气候条件

转变为
我们今天所享受的温暖气候条件的。

我们从冰芯研究中

得知,从这些
寒冷条件到温暖条件

的过渡并不顺利,正如您可以
从太阳辐射的缓慢增加中预测的那样。

我们从冰芯中知道这一点,
因为如果你深入冰层,

你会发现每年的冰带
,你可以在冰山中看到这一点。

你可以看到那些蓝白色的图层。

气体被困在冰芯中,
因此我们可以测量二氧化碳——

这就是我们知道
过去二氧化碳含量较低的原因——

而且冰的化学性质
也告诉我们

极地地区的温度。

如果你把时间
从 20,000 年前移到现代,

你会看到温度升高了。

它并没有顺利增加。

有时它增加得非常快,

然后出现平台期,

然后迅速增加。

两个极地地区的情况不同

,CO2也随着跳跃而增加。

所以我们很确定海洋
与此有很大关系。

海洋储存了大量的碳,大约是大气中碳的

60
倍。

它还起到在赤道输送热量的作用

,海洋富含营养
,它控制着初级生产力。

因此,如果我们想了解
深海中发生了什么,

我们真的需要下到那里,

看看那里有什么,

然后开始探索。

这是一些壮观的镜头
,来自赤道大西洋国际水域

约一公里深
的海山

,远离陆地。

你和我的研究团队是第
一批看到这片海底的人

你可能会看到新物种。

我们不知道。

您必须收集样本
并进行一些非常严格的分类。

你可以看到美丽的泡泡糖珊瑚。

这些珊瑚上生长着海蛇尾。

这些东西看起来
像是从珊瑚中长出的触须。

在这座巨大的海底山脉的玄武岩上生长着由不同形式的碳酸钙制成的珊瑚

还有一些黑色的东西,
它们是珊瑚化石,

当我们回到过去时,我们将更多地谈论这些 .

为此,我们
需要租一艘研究船。

这是詹姆斯库克,
一艘停泊在特内里费岛的海洋级研究船

看起来很漂亮,对吧?

太好了,如果你不是一个伟大的水手。

有时它
看起来更像这样。

这是我们试图
确保我们不会丢失珍贵的样品。

每个人都在四处奔波
,我晕船得厉害,

所以这并不总是很有趣,
但总的来说它是。

所以我们必须成为
一个非常好的映射器才能做到这一点。

你看不到那种壮观的
珊瑚丰度无处不在。

它是全球性的,而且很深,

但我们需要真正
找到合适的地方。

我们刚刚看到了一张全球地图,上面
覆盖的是我们去年的游轮

通道。

这是一次为期七周的巡航

,这就是我们,在七周内制作

了大约 75,000 平方公里
的海底地图,

但这只是
海底的一小部分。

我们从西向东行驶,

越过在大比例尺地图上看起来毫无特色的部分海洋,

但实际上其中一些
山与珠穆朗玛峰一样大。

因此,使用我们在船上制作的地图,

我们可以获得大约 100 米的分辨率,

足以挑选
出部署我们设备的区域,

但不足以看到很多东西。

为此,我们需要在

离海底约五米的地方驾驶遥控飞行器。

如果我们这样做,我们可以得到
分辨率为一米的地图,

分辨率可达数千米。

这里是遥控车

,研究级车。

您可以
在顶部看到一系列大灯。

有高清摄像机、
机械臂,

还有很多小盒子和东西
可以放你的样品。

在这里,我们进行
了这次特殊巡航的第一次潜水,

潜入大海。

我们非常快地
确保遥控车辆

不受任何其他船只的影响。

我们下去

,这些就是你看到的东西。

这些是深海海绵,米级。

这是一种游泳海参——
基本上是一种小型海蛞蝓。

这变慢了。

我给你看的大部分镜头
都被加速了,

因为所有这些都需要很多时间。

这也是一个美丽的海参。

你会看到这种动物
出现是一个很大的惊喜。

我从来没有见过这样的事情
,这让我们都感到有点惊讶。

这是在大约 15 个小时的工作之后
,我们都有些兴奋

,突然这个巨大的
海怪开始滚动过去。 如果你愿意,

它被称为火体
或殖民地被囊动物。

这不是我们想要的。

我们在寻找珊瑚,
深海珊瑚。

你马上就会看到
一张照片。

它很小,大约五厘米高。

它是由碳酸钙制成的,
所以你可以在那里看到它的触手,

在洋流中移动。

像这样的有机体大概可以
活一百年。

随着它的生长,它会
从海洋中吸收化学物质。

化学品
或化学品的量

取决于温度;
这取决于pH值

,取决于营养成分。

如果我们能了解
这些化学物质是如何进入骨骼的,

我们就可以回去
收集化石标本,

并重建
过去海洋的样子。

在这里,您可以看到我们
用真空系统收集珊瑚,

然后将其放入采样容器中。

我们可以非常小心地做到这一点
,我应该补充一下。

其中一些生物的寿命更长。

这是一种名为 Leiopathes 的黑色珊瑚
,由我的同事

Brendan Roark
在夏威夷下方约 500 米处拍摄。

四千年是很长的时间。

如果你从其中一个珊瑚中取出一根树枝
并擦亮它,

这大约有 100 微米宽。

Brendan 对这个珊瑚进行了一些分析
——

你可以看到标记

——他已经能够
证明这些是实际的年带,

所以即使在海洋深处 500 米处,

珊瑚也可以记录季节性变化,

这非常壮观 .

但是 4000 年还不足以
让我们回到上一次冰川期的最大值。

那么我们该怎么办?

我们去寻找这些化石标本。

这就是让我
在我的研究团队中真正不受欢迎的原因。

所以一路走来,

到处都是巨大的鲨鱼,

有火热体,
有游泳的海参,

有巨大的海绵,

但我让每个人都
到这些死去的化石区域

,花很长时间在海底铲土

我们捡起所有这些珊瑚,
把它们带回来,我们把它们分类。

但每一个都是不同的年龄

,如果我们能找出它们的年龄

,然后我们可以测量
这些化学信号,

这有助于我们了解

过去海洋中发生了什么。

所以在左边的图像中,

我在珊瑚上切了一片,
非常仔细地打磨它,

然后拍了一张光学图像。

在右边,

我们把同一块珊瑚
放在核反应堆中,

诱导裂变

,每次发生衰变时,

你可以看到珊瑚上的标记,

所以我们可以看到铀 分配。

我们为什么要这样做呢?

铀是一种非常不受欢迎的元素,

但我喜欢它。

衰变有助于

我们了解海洋中正在发生的事情的速率和日期。

如果你从一开始就记得,

这就是
我们在考虑气候时想要达到的目标。

因此,我们使用激光分析

这些珊瑚中的铀及其子产物钍,

从而准确地告诉我们
化石的年龄。 我将使用

这个美丽
的南大洋动画

来说明
我们如何使用这些珊瑚

来获取一些古老的
海洋反馈。

您可以

在 Ryan Abernathey 制作的动画中看到地表水的密度。

这只是一年的数据,

但你可以看到
南大洋的动态。

强烈的混合,

特别是方框所示的德雷克海峡,

确实是世界上最强的
水流之一


从西向东流动。

它混合得非常湍急,

因为它在那些
巨大的海底山脉上空移动

,这使得二氧化碳和热量
与大气交换进出。

本质上,海洋
通过南大洋呼吸。

我们
在这条南极通道上来回收集了珊瑚,从我的铀测年

中我们发现了一件相当令人惊讶的事情

:在从冰川到间冰期的过渡过程中,珊瑚从南到北迁移

我们真的不知道为什么,

但我们认为
这与食物来源有关

,也可能与水中的氧气有关。

所以我们在这里。

我将说明我认为
我们

从南大洋的这些珊瑚中发现的有关气候的信息。

我们上下海山。
我们收集了小珊瑚化石。

这是我的例证。

我们回想在冰川中,

根据
我们对珊瑚所做的分析,

南大洋的深处
碳含量非常丰富,

顶部有一个
低密度层。

这可以阻止
二氧化碳从海洋中流出。

然后我们发现
了处于中间年龄的珊瑚

,它们向我们展示了海洋
在气候转变的中途混合。

这允许碳
从深海中出来。

然后,如果我们分析
更接近现代的珊瑚,

或者如果我们今天去

那里测量珊瑚的化学成分,

我们会发现我们移动到了一个
碳可以进出交换的位置。

所以这是
我们可以使用化石珊瑚

来帮助我们了解环境的方式。

所以我想把
最后一张幻灯片留给你们。

这只是从
我给你看的第一段录像中截取的。

这是一个壮观的珊瑚花园。

我们甚至没想到
会发现这么漂亮的东西。

它有数千米深。

有新品种。

这只是一个美丽的地方。

其中有化石

,现在我已经训练
你欣赏

那里的化石珊瑚。

所以下次当你
有幸飞越海洋或在海洋上

航行时

,想想看——那里

有前所未见的巨大海山,

还有美丽的珊瑚。

谢谢你。

(掌声)