How do we separate the seemingly inseparable Iddo Magen

Your cell phone is mainly made
of plastics and metals.

It’s easy to appreciate
the inventive process

by which those elements are made to add up
to something so useful and entertaining.

But there’s another story
we don’t hear about as much.

How did we get our raw ingredients
in the first place

from the chaotic tangle of materials
that is nature?

The answer is a group of clever hacks
known as separation techniques.

They work by taking advantage
of the fundamental properties of things

to disentangle them from each other.

Simple separation techniques
apply to many physical scenarios,

like separating cream from milk,

extracting water from soil,

or even sifting out flecks of gold
from river sand.

But not all mixtures
are so easy to unravel.

In some of those cases,

we can exploit the differences between
physical properties within a mixture,

like particle size,

density,

or boiling point

to extract what’s required.

Take petroleum,

a mixture of different
types of hydrocarbons.

Some of these are valuable as fuels,

and others make good raw materials
for generating electric power.

To separate them, experts rely on one
important feature:

different hydrocarbons boil
at different temperatures.

During the boiling process,
each type vaporizes at a precise point,

then gets separately funneled
into a container

and collected as a liquid as it cools.

Separation techniques
also take us to the sea.

In some drought-stricken countries,

the ocean is the only
available water source.

But of course,
humans can’t drink salt water.

One way to get around this problem

is to remove salt from sea water
with reverse osmosis,

a process that separates
water’s ingredients by size.

A membrane with pores
bigger than water particles,

but smaller than salt particles,

only lets fresh water pass through,

transforming what was once undrinkable
into a life saver.

Meanwhile in the medical world,

blood tests are a vital tool
for evaluating a person’s health,

but doctors typically
can’t examine blood samples

until they’ve separated
the solid blood cells

from the liquid plasma
they’re dissolved in.

To do that, a powerful rotational force
is exerted on the test tube,

causing heavier substances
with higher density,

like blood cells,

to move away from the rotational axis.

Meanwhile, lighter substances
with lower density,

like plasma,

move to its center.

The tube’s contents divide clearly,

and the blood cells and liquid plasma
can be tested independently.

But sometimes, unlike oil,
seawater, and blood,

the parts of mixtures
that we want to separate

share the same physical properties.

In these cases, the only way to isolate
ingredients is by chemical separation,

a complex process that relies
on unique interactions

between components within a mixture
and another material.

One of these methods is chromatography,

a tool forensic scientists use
to examine crime scenes.

They dissolve gathered evidence in a gas,

and can monitor
and analyze the ingredients

as they separate
and move at varying speeds

due to their unique chemical properties.

That information then tells scientists
precisely what was present at the scene,

often helping to identify the culprit.

Separation techniques are not just about
industry,

infrastructure,

medicine,

and justice.

One of the most technically ambitious
projects in human history

is a separation technique aimed at
answering the fundamental question,

“What is the Universe made of?”

By accelerating particles
to extremely high speeds

and smashing them into each other,

we can break them into
their constituent parts ever so briefly.

And if we succeed at that, what’s next?

Is there a most elementary particle?

And if so, what’s it made of?

您的手机主要
由塑料和金属制成。

很容易
欣赏创造性的

过程,这些元素被添加
到如此有用和有趣的东西中。

但是还有另一个
我们没有听说过的故事。

我们
最初是如何

从大自然混乱的材料
中获得原材料的?

答案是一组
被称为分离技术的巧妙技巧。

它们通过
利用事物的基本属性

将它们彼此分开来工作。

简单的分离技术
适用于许多物理场景,

例如从牛奶中分离奶油、

从土壤中提取水,

甚至从河沙中筛选出金粒

但并非所有混合物
都那么容易分解。

在其中一些情况下,

我们可以利用
混合物中物理特性之间的差异,

如粒度、

密度

或沸点

来提取所需的物质。

以石油为例,

它是不同
类型碳氢化合物的混合物。

其中一些作为燃料很有价值,

而另一些则是
用于发电的良好原材料。

为了将它们分开,专家们依靠一个
重要特征:

不同的碳氢化合物
在不同的温度下沸腾。

在沸腾过程中,
每种类型的物质都会在一个精确的点蒸发,

然后分别收集
到一个容器中,

并在冷却时以液体的形式收集。

分离技术
也将我们带到了大海。

在一些遭受旱灾的国家

,海洋是唯一
可用的水源。

但当然,
人类不能喝盐水。

解决这个问题的一种方法

是通过反渗透从海水中去除盐分,这是

一种
按大小分离水成分的过程。

一种孔隙
比水颗粒大

但比盐颗粒小的膜,

只能让淡水通过,

将曾经不可饮用的东西
变成了救生圈。

与此同时,在医学界,

验血
是评估一个人健康状况的重要工具,

但医生通常
不能检查血液样本,

除非他们
将固体血细胞

从溶解的液体血浆中分离出来

为此, 强大的旋转
力施加在试管上,

导致
密度较高的较重物质(

如血细胞

)远离旋转轴。

同时,
密度较低的较轻物质,

如等离子体,

会向其中心移动。

试管内容分明,可独立检测

血细胞和血浆

但有时,与油、
海水和血液不同

,我们想要分离的混合物部分

具有相同的物理特性。

在这些情况下,分离成分的唯一方法
是化学分离,这

是一个复杂的过程,依赖

于混合物中的成分
与另一种材料之间的独特相互作用。

其中一种方法是色谱法,这是

法医科学家
用来检查犯罪现场的一种工具。

它们将收集到的证据溶解在气体中,

并且由于其独特的化学特性

,它们可以在成分分离
和以不同速度移动时

对其进行监测和分析。

然后,这些信息会
准确地告诉科学家现场发生了什么,

通常有助于确定罪魁祸首。

分离技术不仅仅与
工业、

基础设施、

医学

和司法有关。 人类历史上

技术上最雄心勃勃的
项目之一

是旨在
回答基本问题的分离技术,

“宇宙是由什么组成的?”

通过将粒子加速
到极高的速度

并将它们相互粉碎,

我们可以将它们
分解成它们的组成部分。

如果我们成功了,下一步是什么?

有没有最基本的粒子?

如果是这样,它是由什么制成的?