Can you find the next number in this sequence Alex Gendler

These are the first five elements
of a number sequence.

Can you figure out what comes next?

Pause here if you want
to figure it out for yourself.

Answer in: 3

Answer in: 2

Answer in: 1

There is a pattern here,

but it may not be the kind
of pattern you think it is.

Look at the sequence again
and try reading it aloud.

Now, look at the next number
in the sequence.

3, 1, 2, 2, 1, 1.

Pause again if you’d like to think
about it some more.

Answer in: 3

Answer in: 2

Answer in: 1

This is what’s known as
a look and say sequence.

Unlike many number sequences,

this relies not on some mathematical
property of the numbers themselves,

but on their notation.

Start with the left-most digit
of the initial number.

Now, read out how many times
it repeats in succession

followed by the name of the digit itself.

Then move on to the next distinct digit
and repeat until you reach the end.

So the number 1 is read as “one one”

written down the same way
we write eleven.

Of course, as part of this sequence,
it’s not actually the number eleven,

but 2 ones,

which we then write as 2 1.

That number is then read out
as 1 2 1 1,

which written out we’d read as
one one, one two, two ones, and so on.

These kinds of sequences were first
analyzed by mathematician John Conway,

who noted they have
some interesting properties.

For instance, starting with the number 22,
yields an infinite loop of two twos.

But when seeded with any other number,

the sequence grows in some
very specific ways.

Notice that although the number
of digits keeps increasing,

the increase doesn’t seem
to be either linear or random.

In fact, if you extend the sequence
infinitely, a pattern emerges.

The ratio between the amount of digits
in two consecutive terms

gradually converges to a single number
known as Conway’s Constant.

This is equal to a little over 1.3,

meaning that the amount of digits
increases by about 30%

with every step in the sequence.

What about the numbers themselves?

That gets even more interesting.

Except for the repeating sequence of 22,

every possible sequence eventually breaks
down into distinct strings of digits.

No matter what order these strings
show up in,

each appears unbroken in its entirety
every time it occurs.

Conway identified 92 of these elements,

all composed only of digits 1, 2, and 3,

as well as two additional elements

whose variations
can end with any digit of 4 or greater.

No matter what number the sequence
is seeded with,

eventually, it’ll just consist
of these combinations,

with digits 4 or higher only appearing
at the end of the two extra elements,

if at all.

Beyond being a neat puzzle,

the look and say sequence
has some practical applications.

For example, run-length encoding,

a data compression that was once used for
television signals and digital graphics,

is based on a similar concept.

The amount of times a data value repeats
within the code

is recorded as a data value itself.

Sequences like this are a good example
of how numbers and other symbols

can convey meaning on multiple levels.

这些是数列的前五个
元素。

你能猜出接下来会发生什么吗?

如果您想
自己弄清楚,请在此处暂停。

回答:3

回答:2

回答:1

这里有一个模式,

但它可能
不是你认为的那种模式。

再次查看序列
并尝试大声朗读。

现在,看看序列中的下一个数字

3, 1, 2, 2, 1, 1。

如果您想再考虑
一下,请再次暂停。

回答:3

回答:2

回答:1

这就是所谓的“
看和说”序列。

与许多数字序列不同,

这不依赖于
数字本身的某些数学属性,

而是依赖于它们的符号。

从初始数字的最左边的数字
开始。

现在,读出
它连续重复的次数,

然后是数字本身的名称。

然后移动到下一个不同的数字
并重复直到你到达终点。

所以数字 1 读作“一”

,就像
我们写 11 一样。

当然,作为这个序列的一部分,
它实际上不是数字 11,

而是 2 个,

然后我们将其写为 2 1。然后将该

数字读出
为 1 2 1 1

,写出我们会读为
一个 ,一二,二一,以此类推。

这些类型的序列首先
由数学家约翰康威分析,

他指出它们具有
一些有趣的特性。

例如,从数字 22 开始,
产生两个二的无限循环。

但是,当播种任何其他数字时

,序列会以一些
非常特定的方式增长。

请注意,尽管
位数不断增加

,但增加
似乎既不是线性的也不是随机的。

事实上,如果你无限地扩展这个序列
,就会出现一个模式。 两个连续项

中的位数之比

逐渐收敛到一个
称为康威常数的数字。

这等于略高于 1.3,

这意味着数字的数量

随着序列中的每一步增加约 30%。

数字本身呢?

这变得更加有趣。

除了 22 的重复序列,

每一个可能的序列最终都会
分解成不同的数字串。

无论这些字符串以何种顺序
显示,

每次出现时,每个字符串都会完整地显示出来

康威确定了其中 92 个元素,

全部仅由数字 1、2 和 3 组成,

以及两个附加元素,

其变化
可以以 4 或更大的任何数字结尾。

无论序列以什么数字
为种子,

最终,它都将仅
由这些组合组成

,数字 4 或更高仅出现
在两个额外元素的末尾,

如果有的话。

除了作为一个简洁的谜题之外

,“看和说”序列
还有一些实际应用。

例如,游程编码(

一种曾经用于
电视信号和数字图形

的数据压缩)基于类似的概念。

数据值在代码中重复的次数

被记录为数据值本身。

像这样的序列是
数字和其他符号

如何在多个层面上传达意义的一个很好的例子。