The sharks that hunt in forests Luka Seamus Wright

In the coastal waters of the Bahamas,

a young lemon shark is on the run
from a surprising predator:

an adult shark of her own species.

Half of her 17 siblings have already
been eaten by the older generation,

and it looks as though
she’s about to join them.

But just as the predator closes in,

she disappears into a thicket
of underwater roots,

safe in the refuge of the mangrove forest.

Forests don’t usually come to mind
as a habitat for sharks.

But various marine forests cover roughly
4.2 million square kilometers

of the planet,

providing food and shelter
for 35% of the world’s sharks.

Deadly tiger sharks
blend into seagrass meadows

before pouncing on sea cows
and sea turtles.

White sharks hunt down seals in forests
of kelp towering 65 meters tall.

And lemon sharks stalk
forests of mangroves—

the only trees on Earth
that live in the ocean.

All these ecosystems have their quirks,

but mangroves may be the most unique
of all.

Harboring life between their roots
and among their crowns,

mangroves function as an essential bridge
between land and sea.

And to survive between these worlds,
different mangrove species

have evolved various adaptations that
protect them and their resident sharks.

Taking root in the unstable ground
of muddy coastal regions is difficult,

so mangrove seedlings germinate
attached to their mother plant.

Once they’ve grown large enough
to survive on their own,

these partially developed plants begin
to ride the current.

Most take root nearby,
while some travel for several months

before landing in a different part
of the world.

Once they’ve settled down,
mangroves deploy tall, skinny stilt roots,

crutch-like prop roots
or wavy buttress roots,

to support themselves
in their unsteady terrain.

These newly established mangroves have
to contend with two additional problems:

seawater is high in dehydrating
and potentially toxic salt,

and the mud contains little to no oxygen.

This combination would be
lethal to most trees,

but mangroves make the most
of their marshy surroundings.

Rather than being completely buried,

mangrove roots
are largely above the ground.

This allows the microscopic pores on these
roots to take in oxygen during low tide

before closing to create
a waterproof seal during high tide.

Many mangroves also grow snorkel roots,

which can take in oxygen
through the same mechanism,

or directly produce it via photosynthesis.

To stop salt from entering their system,

some mangrove species use
incredibly fine filters in their roots.

Others concentrate salt
inside special cellular compartments,

bark or dying leaves, that then drop off.

Some species can even excrete
the excess minerals

through specially adapted salt glands.

All these processes make mangroves
more than a little salty,

but that doesn’t deter coastal life
from living in their nooks and crannies.

While birds nest among mangrove branches,

fish lay eggs amidst
their sprawling, complex root systems.

Symbiotic sponges and sea squirts
protect their host trees

from hungry woodboring crustaceans.

Crabs, snails, and shrimp
eat algae, mussels, barnacles,

and salty mangrove detritus.

These animals in turn feed fish,

which are devoured by shark pups
roaming the roots—

alongside occasional
vegetarian meals of seagrass.

But sharks aren’t just the beneficiaries
of marine forests,

they’re part of the glue
that holds them together.

Sharks limit the abundance of animals

which would otherwise overgraze
these essential plants.

Just as marine forests provide shelter
to vulnerable baby predators,

those predators grow up
to protect their forest homes.

Unfortunately, both sides of this delicate
balance are under threat.

Overfishing has decimated
shark populations worldwide,

and many marine forests are being polluted
or cut down for coastal development.

This destruction
is especially dangerous

because marine forests are one
of the single most important ecosystems

in mitigating climate change.

Mangroves and seagrasses trap
carbon between their roots,

and fast-growing kelps export vast
amounts of carbon to the deep ocean.

Together, marine forests sequester around
310 million tonnes of carbon every year,

capturing 3% of our annual
global carbon emissions.

So, like the sharks that inhabit them,

humans need to fight tooth and nail
to protect these essential ecosystems.

在巴哈马的沿海水域,

一条年轻的柠檬鲨正在
逃离令人惊讶的捕食者:

她自己物种的成年鲨鱼。

她的17个兄弟姐妹中有一半已经
被老一辈吃掉了

,看起来
她即将加入他们的行列。

但就在捕食者靠近时,

她消失在一片
水下树根丛中,

安全地躲在红树林的避难所中。

人们通常不会想到森林
是鲨鱼的栖息地。

但各种海洋森林覆盖了大约
420 万平方公里

的地球,


世界上 35% 的鲨鱼提供食物和庇护所。

致命的
虎鲨混入海草草地,

然后扑向海牛
和海龟。

白鲨在
高达 65 米的海带林中猎杀海豹。

柠檬鲨
在红树林中徘徊——

地球上
唯一生活在海洋中的树木。

所有这些生态系统都有其怪癖,

但红树林可能是最独特
的。 红树林

在其根部和树冠之间孕育着生命


陆地和海洋之间的重要桥梁。

为了在这些世界之间生存,
不同的红树林物种

已经进化出各种适应性来
保护它们和它们的常驻鲨鱼。

在泥泞的沿海地区不稳定的土地
上扎根是很困难的,

因此红树林幼苗
附着在母株上发芽。

一旦它们长到
足以独立生存,

这些部分发育的植物就会
开始顺势而为。

大多数人在附近扎根,
而有些人会旅行几个月,

然后降落在
世界不同的地方。

一旦他们安顿下来,
红树林就会部署高大、瘦削的高跷根、

拐杖状的支撑根
或波浪状的支撑根,


在不稳定的地形中支撑自己。

这些新建立的红树林必须
应对两个额外的问题:

海水中的脱水
和潜在有毒盐含量很高,

而泥浆中几乎不含氧气。

这种组合
对大多数树木来说都是致命的,

但红树林充分利用
了它们的沼泽环境。

红树林的根部
并没有被完全掩埋,而是大部分都在地面之上。

这使得这些
根上的微孔在退潮时吸收氧气,然后在涨潮

时关闭以
形成防水密封。

许多红树林还长出浮潜根,

它们可以
通过相同的机制吸收氧气,

或者通过光合作用直接产生氧气。

为了阻止盐进入它们的系统,

一些红树林物种
在它们的根部使用了非常精细的过滤器。

其他人将盐集中
在特殊的细胞隔间、

树皮或垂死的叶子中,然后脱落。

有些物种甚至可以

通过特别适应的盐腺排出多余的矿物质。

所有这些过程都使红
树林有点咸,

但这并不能阻止沿海生物
生活在它们的角落和缝隙中。

当鸟儿在红树林的树枝间筑巢时,

鱼儿在
其庞大而复杂的根系中产卵。

共生海绵和海鞘
保护它们的寄主树

免受饥饿的蛀木甲壳类动物的侵害。

螃蟹、蜗牛和虾
吃藻类、贻贝、藤壶

和咸红树林碎屑。

这些动物反过来喂鱼,

这些鱼被
在根部游荡的鲨鱼幼崽

吞食——偶尔还会
吃海草素食。

但鲨鱼不仅
是海洋森林的受益者,

它们还是将它们粘合在一起的粘合剂的一部分

鲨鱼限制了动物的数量,

否则这些动物会过度放牧
这些重要植物。

正如海洋森林
为脆弱的幼年掠食者提供庇护一样,

这些掠食者长大后是
为了保护他们的森林家园。

不幸的是,这种微妙
平衡的双方都受到威胁。

过度捕捞已导致
全球鲨鱼数量锐减

,许多海洋森林
因沿海开发而受到污染或砍伐。

这种
破坏尤其危险,

因为海洋森林是减缓气候变化
的最重要的生态系统

之一。

红树林和海草
在其根部之间捕获碳

,快速生长的海带将
大量碳排放到深海。

海洋森林
每年共吸收约 3.1 亿吨碳,

占我们每年
全球碳排放量的 3%。

因此,就像栖息在其中的鲨鱼一样,

人类需要
竭尽全力保护这些重要的生态系统。