Can you be awake and asleep at the same time Masako Tamaki

Many animals need sleep.

Even brainless jellyfish enter
sleep-like states where they pulse less

and respond more slowly
to food and movement.

But all of the threats and demands
animals face

don’t just go away when it’s time to doze.

That’s why a range of birds and mammals
experience some degree

of asymmetrical sleep where parts
of their brain are asleep

and other areas are more active.

This is even true for humans.

So how does it work?

All vertebrate brains consist
of two hemispheres: the right and left.

Brain activity is usually similar
across both during sleep.

But during asymmetrical sleep,

one brain hemisphere can be in deep sleep
while the other is in lighter sleep.

And in an extreme version
called “unihemispheric sleep,”

one hemisphere may appear completely awake
while the other is in deep sleep.

Take bottlenose dolphins.

Their breathing is consciously controlled,

and they must surface for air every
few minutes or they’ll drown.

When they have a newborn calf, they must
actually swim nonstop for weeks

in order to keep it safe.

So dolphins sleep unihemispherically,
with just one hemisphere at a time.

This allows them to continue swimming
and breathing while snoozing.

Other marine mammals also
need asymmetrical sleep.

Fur seals might spend weeks on end
migrating at sea.

They slip into unihemispheric sleep
while floating horizontally,

holding their nostrils above the surface,
closing their upward-facing eye,

and keeping their
downward-facing eye open.

This may help them stay alert
to threats from the depths.

Similar pressures keep birds
partially awake.

Mallard ducks sleep in groups, but some
must inevitably be on the peripheries.

Those ducks spend more time
in unihemispheric sleep,

with their outward-facing eyes open

and their corresponding
brain hemispheres more active.

Other birds have been shown to catch z’s
in midair migration.

While undertaking non-stop transoceanic
flights of up to 10 days,

frigatebirds either sleep with one
or both hemispheres at a time.

They do so in seconds-long bursts,
usually while riding air currents.

But the frigatebirds still sleep
less than 8% of what they would on land,

suggesting a great tolerance
for sleep deprivation.

It’s currently unclear whether
asymmetrical sleep

packs the same benefits as sleep
in both hemispheres

and how this varies across species.

In one experiment, fur seals relied
on asymmetrical sleep

while being constantly stimulated.

But in recovery, they showed
a strong preference

for sleep across both hemispheres,

suggesting that it was more restorative
for them.

Dolphins, on the other hand,

have been observed to maintain high levels
of alertness for at least five days.

By switching which hemisphere is awake,

they get several hours of deep sleep
in each hemisphere

throughout a 24-hour period.

This may be why unihemispheric sleep alone
meets their needs.

So, what about humans?

Have you ever woken up groggy after
your first night in a new place?

Part of your brain might’ve spent
the night only somewhat asleep.

For decades, scientists have recognized
that participants sleep poorly

their first night in the lab.

It’s actually customary to toss
out that night’s data.

In 2016, scientists discovered
that this “first night effect”

is a very subtle version
of asymmetrical sleep in humans.

They saw that, during the first night,

participants experience deeper sleep
in their right hemisphere

and lighter sleep in their left.

When exposed to infrequent sounds,

that lighter sleeping left hemisphere
showed greater bumps in activity.

Participants also woke up and responded
to infrequent sounds faster

during the first night than
when experiencing deep sleep

in both hemispheres
during nights following.

This suggests that, like other animals,

humans use asymmetrical sleep
for vigilance,

specifically in unfamiliar environments.

So, while your hotel room is obviously
not trying to eat you

and you’re not going to die
if you don’t continue moving,

your brain is still keeping you alert.

Just in case.

许多动物需要睡眠。

即使是无脑水母也会进入
类似睡眠的状态,此时它们的脉搏更少

,对食物和运动的反应也更慢

但动物面临的所有威胁和要求

不会在打瞌睡时消失。

这就是为什么一系列鸟类和哺乳动物会
经历某种程度

的不对称睡眠,
它们的大脑部分处于睡眠状态,

而其他区域则更加活跃。

这对人类来说也是如此。

那么它是怎样工作的?

所有脊椎动物的大脑
都由两个半球组成:右半球和左半球。

睡眠期间两者的大脑活动通常相似。

但在不对称睡眠期间,

一个大脑半球可能处于深度睡眠状态,而另一个大脑半球
处于较浅睡眠状态。


称为“单半球睡眠”的极端版本中,

一个半球可能看起来完全清醒,
而另一个半球则处于深度睡眠状态。

以宽吻海豚为例。

他们的呼吸是有意识地控制的

,他们必须每隔几分钟浮出水面呼吸空气,
否则他们会淹死。

当他们有一只刚出生的小牛时,他们
实际上必须连续游泳数周

以确保其安全。

所以海豚
是单半球睡觉的,一次只睡一个半球。

这使他们能够
在打盹时继续游泳和呼吸。

其他海洋哺乳动物也
需要不对称的睡眠。

海狗可能要花费数周时间
在海上迁徙。

他们
在水平漂浮时滑入单半球睡眠,

将鼻孔保持在表面上方,
闭上朝上的眼睛,

并保持
朝下的眼睛睁开。

这可以帮助他们
对来自深处的威胁保持警惕。

类似的压力使鸟类保持
部分清醒。

野鸭成群结队地睡觉,但有些
必须不可避免地在外围。

这些鸭子
在单半球睡眠中花费更多时间

,它们向外张开的眼睛

,相应的
大脑半球更加活跃。

其他鸟类已被证明可以
在空中迁徙中捕捉 z’s。

在进行
长达 10 天的不间断跨洋飞行时,

军舰鸟要么一次睡一个
半球,要么同时睡两个半球。

它们会在几秒钟内爆发,
通常是在顺流时。

但是军舰鸟的睡眠
时间仍然不到它们在陆地上的 8%,这表明它们

对睡眠剥夺的容忍度很高。

目前尚不清楚
不对称睡眠是否

与两个半球的睡眠具有相同的益处

,以及这在不同物种之间的差异。

在一项实验中,海狗

在不断受到刺激的同时依赖不对称的睡眠。

但在恢复过程中,他们对两个半球都表现
出强烈

的睡眠偏好,

这表明睡眠对他们来说更具恢复性

另一方面,据观察,海豚

至少在五天内保持高度警觉。

通过切换哪个半球处于清醒状态,

他们可以

在 24 小时内的每个半球获得数小时的深度睡眠。

这可能就是为什么单靠单侧睡眠就
可以满足他们的需求。

那么,人类呢?

你有没有
在一个新地方的第一晚醒来后昏昏沉沉的?

你大脑的一部分可能已经过
了一夜,只是有点睡着了。

几十年来,科学家们已经认识
到参与者

在实验室的第一个晚上睡得不好。

实际上习惯于
扔掉当晚的数据。

2016 年,科学家们
发现这种“第一夜效应”

是人类睡眠不对称的一个非常微妙的版本。

他们发现,在第一个晚上,

参与者
的右半球

睡眠更深,左脑睡眠更浅。

当暴露于不常见的声音时

,睡眠较浅的左半球
表现出更大的活动颠簸。

参与者在第一个晚上醒来并对
不常见的声音做出反应

比在随后的晚上

在两个半球
经历深度睡眠时更快。

这表明,与其他动物一样,

人类使用不对称睡眠
来保持警惕,

特别是在不熟悉的环境中。

所以,虽然你的酒店房间显然
不是想吃掉你


如果你不继续移动你也不会死,但

你的大脑仍然让你保持警觉。

以防万一。