Possible futures from the intersection of nature tech and society Natsai Audrey Chieza

Transcriber:

In 1998, my friends and I
won a national art competition.

The prize was a week in Disneyland Paris,

with hundreds of other children
from across the world,

as delegates to UNESCO’s
International Children’s Summit.

Now this was no ordinary
trip to Disneyland.

Between running riot in the park
and making friends,

we workshopped the future of this planet.

How could we overcome
the problems of pollution

and their threats to human
and environmental health?

How could we guarantee
universal human rights

of equality, justice and dignity?

Towards the end of the summit,

we created a 20-year time capsule,

with each country planting a vision
of the future they hoped for.

But as I look around today,

it’s clear to me that those visions
have not come true yet.

We’re confronted by the same crises,

made infinitely worse through decades
of geopolitical inaction.

We now face global existential risks
as a result of the climate emergency,

with the world’s least-resourced
and most disenfranchised

made more vulnerable despite
having contributed least to the problem.

That trip to Disneyland

taught me that art and design
had the power to imagine

other possible futures.

The question is:
“How do we actually build them?”

Today, I lead a design agency
called Faber Futures,

and my team and I design
at the intersection of biology,

technology and society.

Through research
and development collaborations,

partnerships, and other strategies,

we model a future in which both people
and planet can thrive

and where the role that biotechnology
plays is shaped through plural visions.

Our design work prototypes the future.

We have developed toxin-free,
water-efficient textile dye processes

with a pigment-producing bacterium,

pioneering new ways
of thinking about circular design

for the textile and fashion industries.

You’ve probably already heard
of data surveillance,

but what if it was biological?

Using open-source data
on the human microbiome,

we’ve created experiential artworks
that engage with the ethics of DNA mining.

How can we embed a culture
of multidisciplinary codesign

from within the industry of biotechnology?

To find out, we designed
the Ginkgo Creative Residency,

which invites creative practitioners

to spend several months
developing their own projects

from within the Ginkgo Bioworks foundry.

We also generate and publish
unique and expansive dialogues

between people with different
types of knowledges –

Afrofuturists with astrobiologists,

food researchers
with Indigenous campaigners.

The stories that they and others tell

give us the tools we need to imagine
other biological futures.

Design deeply permeates all of our lives,

and yet we tend to recognize things

and not the complex systems
that actually produce them.

My team and I explore these systems,

connecting fields
like culture and technology,

ecology and economics.

We identify problems, and where value
and values can be created.

We like to think about a design brief
as an instruction manual,

mapping the context of the problem,

and where we might find solutions.

Getting there might involve
establishing new networks,

building new tools,
and even infrastructure.

How all of these pieces
interact with one another

can determine research and development,
material specification,

manufacturing and distribution.

Who ultimately benefits,
and at what environmental cost.

So you can start to imagine
the kinds of systems that might drive

the design of your smartphone
or even a rideshare service.

But when it comes
to the design of biology,

things become a little bit more abstract.

Organism engineers design microbes
to do industrially useful things,

like bioremediate toxic waste sites

or replace petroleum-based textiles
with renewable ones.

To architect this level of biological
precision and performance at scale,

tools like DNA sequencing, automation
and machine learning are essential.

They allow the organism engineers
to really zoom in on biology,

asking scientific questions
to solve deep technical challenges.

Successful solutions
designed at a molecular scale

eventually interact
with those at a planetary one.

But if all of the research and development
focuses on the technical question alone,

then what do we risk
by excluding the broader context?

We’ve all spent over a year now
living at an unprecedented intersection

between biology, technology and society.

We’ve witnessed, with the rapid
development of the COVID-19 vaccine,

that although techno-fixes
offer us a critical remedy,

they don’t always provide a panaceum,

and that’s because the real world
is a complex social and economic one,

where dominant systems
determine the distribution of benefits.

It will be another two years

before hundreds of millions
across the world

receive their emergency vaccines,

which, in a globalized world,
risks undermining its efficacy

on all our communities.

Scientific endeavors
have long been considered separate

to real-world contexts,

an idea that places profound limitations
on the promises of biotechnology.

By missing the full scope of design,
we may think we’re solving problems

and realize later that actually,
not much has changed.

And a similar logic is emerging

in biotechnology for consumer
goods and industry.

So far, it offers innovations
for commodities markets,

drop-in replacements
that change problematic ingredients,

and yet sustain prevailing mindsets
and dynamics of power.

Again, technically sound solutions

that unwittingly reinforce
social and ecological inequities.

Addressing these asymmetries

requires us to take
a more revolutionary approach,

one that begins by asking
“What kind of a world do we wish for?”

So what if we could do both?

What if we could design
at the molecular scale,

with the real world in mind?

A more integrated approach
to designing with biology

requires us to ask more nuanced questions;

not “What will people buy,”

but “What if we put communities,
rather than commodities, first.”

“Could distributed biotechnology

enable people to find
local solutions to local problems?”

“Can we move beyond a biotechnology
that creates monocultures

to one which, like nature itself,
embraces a multiplicity of adaptations?”

“How do we equip
the next generation with the tools,

spaces and communities they need
to broaden their skills,

knowledge and ideas?”

An incredible amount of work
that begins to address these questions

is already underway.

The Open Bioeconomy Lab,

which has nodes in the UK,
Ghana and Cameroon,

designs open-source research tools
to expand geographies of innovation

into resource-constrained contexts.

Over thousands of years,

we’ve domesticated plants
to make them edible,

creating nutrient-rich, diverse
and delicious food cultures.

MicroByre wants to do the same,
but for microbes.

The San Francisco based start-up
assembles diverse microbial libraries

for a more resilient biological toolkit.

Imagine the expanded color palettes
and different applications,

from different types
of pigment-producing bacteria.

And from London’s famed art school,
Central Saint Martins,

students from different disciplines

are generating new
sustainable design practices

from biological medium.

You’ll find them at work in a wet lab,

nested between historic fashion textiles
and architecture departments,

a radical reunification
of the arts and sciences in education.

Many examples of this type of systemic
design work in biotechnology exist –

piece them together, and you start
to glimpse different visions

of our biological futures.

I don’t know what happened

to the time capsule
we left behind in Paris,

but I do remember wishing
for a more just and meaningful world,

where all of nature can thrive.

In their own significant ways,

technology and design have played
their role in denying us this,

but it’s in our power to change that.

Fundamentally,

this means recognizing that the design
of, with and from biology

is designing systems and not stuff,

and that with a truly ambitious
design proposition,

one that’s based on values
that center flourishing,

caretaking and equity.

We have the opportunity to build
truly transformative systems,

systems that open up holistic measures
of value and impact,

and how we think about scaling innovation

and doing business
for the futures we now need.

抄写员:

1998年,我和我的朋友们
在全国艺术比赛中获胜。

该奖项是在巴黎迪斯尼乐园举行的一周活动,

来自世界各地的数百名儿童

作为代表参加了联合国教科文组织
国际儿童峰会。

现在,这不是一次普通的
迪士尼乐园之旅。

在公园里暴动
和结交朋友之间,

我们讨论了这个星球的未来。

我们如何才能
克服污染问题

及其对人类
和环境健康的威胁?

我们如何保证

平等、正义和尊严的普遍人权?

在峰会即将结束时,

我们创建了一个 20 年的时间胶囊

,每个国家都在种植
他们所希望的未来愿景。

但是当我今天环顾四周时,

我很清楚这些愿景
还没有实现。

我们面临着同样的危机,

由于几十年
的地缘政治不作为而变得更加糟糕。 由于气候紧急情况,

我们现在面临全球生存风险
,尽管对这个问题的贡献最小,但

世界上资源最少
、权利最被剥夺的人

变得更加脆弱

那次迪斯尼乐园之旅

教会我艺术和设计
有能力想象

其他可能的未来。

问题是:
“我们如何实际构建它们?”

今天,我领导着一家名为 Faber Futures 的设计机构,我

和我的团队
在生物学、技术和社会的交叉点进行设计

通过
研发合作、

伙伴关系和其他战略,

我们塑造了一个人类
和地球都能繁荣发展的未来

,生物技术所扮演的角色
是通过多元化的愿景来塑造的。

我们的设计工作是未来的原型。

我们开发了一种无毒、
节水的纺织染料工艺,

使用一种产生颜料的细菌,

开创

了纺织和时尚行业循环设计的新思维方式。

您可能已经听说
过数据监控,

但如果它是生物的呢?

使用人类微生物组的开源
数据,

我们创造
了与 DNA 挖掘伦理相关的体验艺术品。

我们如何才能

在生物技术行业内嵌入多学科协同设计的文化?

为了找出答案,我们设计
了 Ginkgo Creative Residency

,邀请创意从业

者花费数月时间

在 Ginkgo Bioworks 铸造厂内开发自己的项目。

我们还生成并发布

具有不同
知识类型的人之间的独特而广泛的对话——

非洲未来主义者与天体生物学家,

食品研究人员
与土著活动家。

他们和其他人讲述的故事

为我们提供了想象
其他生物未来所需的工具。

设计深深地渗透到我们的生活中

,但我们倾向于识别事物,


不是实际产生它们的复杂系统。

我和我的团队探索这些系统,


文化和技术、

生态和经济等领域联系起来。

我们发现问题,以及
可以创造价值和价值的地方。

我们喜欢将设计简报
视为指导手册,

映射问题的背景

以及我们可以在哪里找到解决方案。

到达那里可能涉及
建立新网络、

构建新工具
甚至基础设施。

所有这些部件如何
相互作用

可以决定研发、
材料规格、

制造和分销。

谁最终受益
,环境成本如何。

因此,您可以开始
想象可能

推动智能手机设计
甚至拼车服务的系统类型。

但是当涉及
到生物学的设计时,

事情就变得有点抽象了。

有机体工程师设计微生物
来做工业上有用的事情,

例如生物修复有毒废物场地


用可再生纺织品代替石油基纺织品。

要大规模构建这种水平的生物
精度和性能,

DNA 测序、自动化
和机器学习等工具必不可少。

它们使有机体工程师
能够真正放大生物学,

提出科学问题
以解决深层次的技术挑战。

在分子尺度上设计的成功解决方案

最终会
与行星上的解决方案相互作用。

但是,如果所有的研究和开发
都只关注技术问题,

那么
排除更广泛的背景会带来什么风险?

一年多来,我们都
生活在

生物学、技术和社会之间前所未有的交汇处。

随着 COVID-19 疫苗的快速发展,我们见证

了虽然技术修复
为我们提供了关键的补救措施,

但它们并不总是提供灵丹妙药

,这是因为现实世界
是一个复杂的社会和经济世界,

其中主导系统
决定利益分配。

世界各地数以亿计的人

收到他们的紧急疫苗还需要两年时间

,在全球化的世界中,这
可能会削弱其

对我们所有社区的效力。

长期以来,人们一直认为科学努力

与现实世界的环境是分开的,

这种想法严重
限制了生物技术的前景。

由于错过了设计的全部范围,
我们可能会认为我们正在解决问题

,后来意识到实际上并
没有太大变化。

类似的逻辑正在

用于消费品和工业的生物技术中出现

到目前为止,它为大宗商品市场提供了创新,提供

了改变有问题的成分的替代品,

同时维持了主流的心态
和权力动态。

同样,技术上合理的解决方案会

在不知不觉中加剧
社会和生态不平等。

解决这些不对称问题

需要我们采取
一种更具革命性的方法

,首先要问
“我们想要什么样的世界?”

那么如果我们两者都可以呢?

如果我们可以
在分子尺度上进行设计,

考虑到现实世界会怎样?

更综合
的生物学设计方法

需要我们提出更细微的问题;

不是“人们会买什么”,

而是“如果我们把社区
而不是商品放在首位会怎样”。

“分布式生物技术能否

使人们
找到当地问题的当地解决方案?”

“我们能否超越
创造单一文化的生物技术

,转向与自然本身一样,
包含多种适应性的生物技术?”

“我们如何
为下一代提供他们需要的工具、

空间和社区
来扩展他们的技能、

知识和想法?”

开始解决这些问题

的大量工作已经在进行中。

在英国、加纳和喀麦隆设有节点的开放生物经济实验室

设计开源研究工具,
以将创新地域扩展

到资源受限的环境中。

数千年来,

我们驯化植物
使其可食用,

创造了营养丰富、多样化
和美味的饮食文化。

MicroByre 也想做同样的事情,
但针对的是微生物。

这家位于旧金山的初创公司
组装了多种微生物库

,以打造更具弹性的生物工具包。

想象一下

来自不同类型
的产生色素的细菌的扩展调色板和不同的应用。

来自伦敦著名的艺术学校
中央圣马丁,

来自不同学科的学生

正在从生物媒介中产生新的
可持续设计实践

你会发现他们在一个潮湿的实验室里工作,

位于历史悠久的时装纺织品
和建筑系之间,


是教育中艺术和科学的彻底统一。

生物技术中存在许多此类系统设计工作的例子——将

它们拼凑在一起,你就会
开始瞥见

我们生物未来的不同愿景。

我不知道我们在巴黎留下

的时间胶囊发生了什么

但我确实记得希望
有一个更公正、更有意义的世界,

让所有的大自然都能茁壮成长。 技术和设计

以它们自己的重要方式

在否认我们这一点方面发挥了作用,

但我们有能力改变这一点。

从根本上说,

这意味着要认识到
,生物学

的设计是设计系统而不是东西,

并且具有真正雄心勃勃的
设计主张

,它基于以
繁荣、

照顾和公平为中心的价值观。

我们有机会建立
真正具有变革性的系统,这些

系统可以打开
价值和影响的整体衡量标准,

以及我们如何考虑扩大创新


为我们现在需要的未来开展业务。