A printable flexible organic solar cell Hannah Brckstmmer

You may have noticed
that I’m wearing two different shoes.

It probably looks funny –

it definitely feels funny –

but I wanted to make a point.

Let’s say my left shoe corresponds
to a sustainable footprint,

meaning we humans consume
less natural resources

than our planet can regenerate,

and emit less carbon dioxide
than our forests and oceans can reabsorb.

That’s a stable and healthy condition.

Today’s situation
is more like my other shoe.

It’s way oversized.

At the second of August in 2017,

we had already consumed all resources
our planet can regenerate this year.

This is like spending all your money
until the 18th of a month

and then needing a credit
from the bank for the rest of the time.

For sure, you can do this
for some months in a row,

but if you don’t change your behavior,

sooner or later,
you will run into big problems.

We all know the devastating effects
of this excessive exploitation:

global warming,

rising of the sea levels,

melting of the glaciers and polar ice,

increasingly extreme
climate patterns and more.

The enormity of this problem
really frustrates me.

What frustrates me even more
is that there are solutions to this,

but we keep doing things
like we always did.

Today I want to share with you

how a new solar technology can contribute
to a sustainable future of buildings.

Buildings consume about 40 percent
of our total energy demand,

so tackling this consumption

would significantly reduce
our climate emissions.

A building designed
along sustainable principles

can produce all the power
it needs by itself.

To achieve this,

you first have to reduce
the consumption as much as possible,

by using well-insulated walls
or windows, for instance.

These technologies
are commercially available.

Then you need energy
for warm water and heating.

You can get this
in a renewable way from the sun

through solar-thermal installations

or from the ground and air,
with heat pumps.

All of these technologies are available.

Then you are left
with the need for electricity.

In principle, there are several ways
to get renewable electricity,

but how many buildings do you know
which have a windmill on the roof

or a water power plant in the garden?

Probably not so many, because usually,
it doesn’t make sense.

But the sun provides abundant energy
to our roofs and facades.

The potential to harvest this energy
at our buildings' surfaces is enormous.

Let’s take Europe as an example.

If you would utilize all areas
which have a nice orientation to the sun

and they’re not overly shaded,

the power generated by photovoltaics

would correspond to about 30 percent
of our total energy demand.

But today’s photovoltaics
have some issues.

They do offer a good
cost-performance ratio,

but they aren’t really flexible
in terms of their design,

and this makes aesthetics a challenge.

People often imagine pictures like this

when thinking about
solar cells on buildings.

This may work for solar farms,

but when you think of buildings,
of streets, of architecture,

aesthetics does matter.

This is the reason why we don’t see
many solar cells on buildings today.

They just don’t match.

Our team is working on a totally
different solar-cell technology,

which is called
organic photovoltaics or OPV.

The term organic describes

that the material used
for light absorption and charge transport

are mainly based on the element carbon,

and not on metals.

We utilize the mixture of a polymer

which is set up by different
repeating units,

like the pearls in a pearl chain,

and a small molecule
which has the shape of a football

and is called fullerene.

These two compounds are mixed
and dissolved to become an ink.

And like ink,

they can be printed with simple
printing techniques like slot-die coating

in a continuous roll-to-roll process
on flexible substrates.

The resulting thin layer
is the active layer,

absorbing the energy of the sun.

This active layer is extremely effective.

You only need a layer thickness
of 0.2 micrometers

to absorb the energy of the sun.

This is 100 times thinner
than a human hair.

To give you another example,

take one kilogram of the basic polymer

and use it to formulate the active ink.

With this amount of ink,

you can print a solar cell
the size of a complete football field.

So OPV is extremely material efficient,

which I think is a crucial thing
when talking about sustainability.

After the printing process,

you can have a solar module
which could look like this …

It looks a bit like a plastic foil

and actually has many of its features.

It’s lightweight …

it’s bendable …

and it’s semi-transparent.

But it can harvest the energy
of the sun outdoors

and also of this indoor light,

as you can see with this small,
illuminated LED.

You can use it in its plastic form

and take advantage of its low weight
and its bendability.

The first is important when thinking
about buildings in warmer regions.

Here, the roofs are not designed
to bear additionally heavy loads.

They aren’t designed
for snow in winter, for instance,

so heavy silicon solar cells
cannot be used for light harvesting,

but these lightweight solar foils
are very well suited.

The bendability is important

if you want to combine the solar cell
with membrane architecture.

Imagine the sails
of the Sydney Opera as power plants.

Alternatively, you can
combine the solar foils

with conventional construction
materials like glass.

Many glass facade elements
contain a foil anyway,

to create laminated safety glass.

It’s not a big deal to add
a second foil in the production process,

but then the facade element
contains the solar cell

and can produce electricity.

Besides looking nice,

these integrated solar cells come along
with two more important benefits.

Do you remember the solar cell
attached to a roof I showed before?

In this case, we install the roof first,

and as a second layer, the solar cell.

This is adding on the installation costs.

In the case of integrated solar cells,

at the site of construction,
only one element is installed,

being at the same time
the envelope of the building

and the solar cell.

Besides saving on the installation costs,

this also saves resources,

because the two functions
are combined into one element.

Earlier, I’ve talked about optics.

I really like this solar panel –

maybe you have different taste
or different design needs …

No problem.

With the printing process,

the solar cell can change
its shape and design very easily.

This will give the flexibility
to architects,

to planners and building owners,

to integrate this electricity-producing
technology as they wish.

I want to stress that this is not
just happening in the labs.

It will take several more years
to get to mass adoption,

but we are at the edge
of commercialization,

meaning there are several companies
out there with production lines.

They are scaling up their capacities,

and so are we, with the inks.

(Shoe drops)

This smaller footprint
is much more comfortable.

(Laughter)

It is the right size, the right scale.

We have to come back to the right scale
when it comes to energy consumption.

And making buildings carbon-neutral
is an important part here.

In Europe,

we have the goal to decarbonize
our building stock [by] 2050.

I hope organic photovoltaics
will be a big part of this.

Here are a couple of examples.

This is the first commercial installation
of fully printed organic solar cells.

“Commercial” means that the solar cells
were printed on industrial equipment.

The so-called “solar trees”
were part of the German pavilion

at the World Expo in Milan in 2015.

They provided shading during the day

and electricity
for the lighting in the evening.

You may wonder why this hexagonal shape
was chosen for the solar cells.

Easy answer:

the architects wanted to have
a specific shading pattern on the floor

and asked for it,

and then it was printed as requested.

Being far from a real product,

this free-form installation hooked
the imagination of the visiting architects

much more than we expected.

This other application
is closer to the projects

and applications we are targeting.

In an office building
in São Paulo, Brazil,

semitransparent OPV panels
are integrated into the glass facade,

serving different needs.

First, they provided shading
for the meeting rooms behind.

Second, the logo of the company
is displayed in an innovative way.

And of course, electricity is produced,

reducing the energy footprint
of the building.

This is pointing towards a future

where buildings are no longer
energy consumers,

but energy providers.

I want to see solar cells
seamlessly integrated

into our building shells

to be both resource-efficient
and a pleasure to look at.

For roofs, silicon solar cells
will often continue to be a good solution.

But to exploit the potential
of all facades and other areas,

such as semitransparent areas,

curved surfaces and shadings,

I believe organic photovoltaics
can offer a significant contribution,

and they can be made in any form
architects and planners will want them to.

Thank you.

(Applause)

你可能已经
注意到我穿着两种不同的鞋子。

它可能看起来很有趣——

感觉肯定很有趣——

但我想说明一点。

假设我的左鞋对应
的是可持续足迹,

这意味着我们人类消耗的
自然资源

少于我们的星球可以再生的资源

,排放的二氧化碳
少于我们的森林和海洋可以重新吸收的量。

这是一个稳定和健康的状态。

今天的
情况更像是我的另一只鞋。

实在是太大了

2017 年 8 月 2 日,

我们已经消耗
了地球今年可以再生的所有资源。

这就像
在一个月的 18 日之前花完所有的钱

,然后
在剩下的时间里需要银行的信贷。

当然,你可以
连续几个月这样做,

但如果你不改变你的行为,

迟早
你会遇到大问题。

我们都知道
这种过度开采的破坏性影响:

全球变暖、

海平面上升、

冰川和极地冰融化、

日益极端的
气候模式等等。

这个问题的严重性
真的让我很沮丧。

更让我沮丧的
是,有解决方案,

但我们继续
像往常一样做事。

今天,我想与大家分享

一种新的太阳能技术如何
为建筑的可持续未来做出贡献。

建筑消耗
了我们总能源需求的约 40%,

因此解决这一消耗

将显着减少
我们的气候排放。 按照可持续原则

设计的建筑

可以自行产生所需的所有
电力。

为此,

您首先必须
尽可能减少消耗,例如

使用隔热良好的墙壁
或窗户。

这些技术
是可商购的。

然后你需要能量
来提供温水和取暖。

您可以

通过太阳能热装置

或通过热泵从地面和空气中
以可再生的方式获得这一点。

所有这些技术都是可用的。

然后你
就需要用电了。

原则上,有几种
方法可以获得可再生电力,

但你知道有多少建筑物
的屋顶上有风车

或花园里有水力发电厂?

可能没有那么多,因为通常,
它没有意义。

但是太阳
为我们的屋顶和外墙提供了丰富的能量。

在我们的建筑物表面收集这种能量的潜力是巨大的。

让我们以欧洲为例。

如果您将利用所有
对太阳具有良好方向

且没有过度阴影的区域

,光伏发电产生的电力


相当于我们总能源需求的 30% 左右。

但是今天的光伏
有一些问题。

它们确实提供了良好的
性价比,

但在设计方面并不十分灵活

,这使得美学成为一个挑战。

在考虑
建筑物上的太阳能电池时,人们经常会想象这样的画面。

这可能适用于太阳能发电场,

但当你想到建筑物
、街道、建筑时,

美学确实很重要。

这就是为什么我们
今天在建筑物上看不到很多太阳能电池的原因。

他们只是不匹配。

我们的团队正在研究一种完全
不同的太阳能电池技术

,称为
有机光伏或 OPV。

有机一词描述


用于光吸收和电荷传输

的材料主要基于元素碳,

而不是金属。

我们利用

由不同
重复单元组成的聚合物(

如珍珠链中的珍珠)


具有足球形状的

称为富勒烯的小分子的混合物。

这两种化合物混合
并溶解成墨水。

与墨水一样,

它们可以使用简单的
印刷技术(如狭缝模头涂层)

在柔性基材上以连续的卷对卷工艺进行印刷

由此产生的薄层
是活性层,

吸收太阳的能量。

这个活性层非常有效。

您只需要
0.2 微米的层厚

即可吸收太阳的能量。


比人的头发细100倍。

再举一个例子,

取一公斤基础聚合物

,用它来配制活性油墨。

使用这么多的墨水,

您可以打印
一个完整足球场大小的太阳能电池。

所以 OPV 的材料效率极高

,我认为这
在谈到可持续性时至关重要。

在打印过程之后,

您可以拥有一个
看起来像这样的太阳能模块……

它看起来有点像塑料箔

,实际上有很多功能。

它很轻……

它是可弯曲的

……它是半透明的。

但它可以收集
室外太阳的能量

,也可以收集室内光的能量,

正如您使用这个小型发光 LED 所看到的那样

您可以以塑料形式使用它,

并利用其重量轻
和可弯曲性。

在考虑温暖地区的建筑物时,第一个很重要

在这里,屋顶不是
为承受额外的重载而设计的。

例如,它们不是为冬季降雪而设计的,

因此重硅太阳能电池
不能用于光收集,

但这些轻质太阳能箔
非常适合。

如果要将太阳能电池与膜结构结合起来,可弯曲性很重要

将悉尼歌剧院的帆想象成发电厂。

或者,您可以
将太阳能箔

与玻璃等传统建筑材料结合使用。 无论如何,

许多玻璃外墙元素
都包含箔,

以制造夹层安全玻璃。

在生产过程中添加第二层箔并不是什么大问题,

但是立面元素
包含太阳能电池

并且可以发电。

除了看起来不错,

这些集成太阳能电池
还有两个更重要的好处。

你还记得
我之前展示的连接在屋顶上的太阳能电池吗?

在这种情况下,我们首先安装屋顶

,第二层安装太阳能电池。

这增加了安装成本。

在集成太阳能电池的情况下,

在施工现场
只安装一个元件

,同时
是建筑物的围护结构

和太阳能电池。

除了节省安装成本外,

这还节省了资源,

因为这两种
功能合二为一。

早些时候,我谈到了光学。

我真的很喜欢这个太阳能电池板——

也许你有不同的品味
或不同的设计需求……

没问题。

通过印刷工艺

,太阳能电池可以
很容易地改变其形状和设计。

这将使
建筑师

、规划师和建筑业主

能够灵活地
按照他们的意愿整合这种发电技术。

我想强调,这
不仅仅发生在实验室。 大规模采用

还需要几年时间

但我们正
处于商业化的边缘,

这意味着有几家
公司拥有生产线。

他们正在扩大他们的产能,我们也在扩大他们

的墨水容量。

(鞋滴)

这种更小的
占地面积更舒适。

(笑声

) 大小合适,比例合适。 在能源消耗

方面,我们必须回到正确的规模

使建筑碳中和
是这里的重要组成部分。

在欧洲,

我们的目标是到
2050 年使我们的建筑存量脱碳。

我希望有机光伏发电
将成为其中的重要组成部分。

这里有几个例子。


是全印刷有机太阳能电池的首次商业安装。

“商用”是指将太阳能
电池印刷在工业设备上。

所谓的“太阳能树”

是2015年米兰世博会德国馆的一部分,

它们白天提供遮阳,晚上提供

照明。

您可能想知道为什么
太阳能电池选择了这种六边形形状。

简单的回答

:建筑师想要
在地板上设置一个特定的阴影图案

并提出要求,

然后按要求打印出来。

与真正的产品相去甚远,

这个自由形式的装置

比我们预期的更能吸引来访建筑师的想象力。

这个其他应用
程序更接近

我们所针对的项目和应用程序。


巴西圣保罗的一栋办公楼中,

半透明的 OPV 面板
被集成到玻璃幕墙中,

满足不同的需求。

首先,他们
为后面的会议室提供阴影。


是创新展示公司标志。

当然,还会产生电力,

从而减少建筑物的能源
足迹。

这表明

未来建筑物不再是
能源消费者,

而是能源提供者。

我希望看到太阳能电池
无缝集成

到我们的建筑

外壳中,既节省资源
又赏心悦目。

对于屋顶,硅太阳能电池
通常会继续成为一个很好的解决方案。

但是为了
利用所有立面和其他区域的潜力,

例如半透明区域、

曲面和阴影,

我相信有机光伏
可以做出重大贡献,

并且可以以
建筑师和规划师希望它们的任何形式制造。

谢谢你。

(掌声)