Forget WiFi. Meet the new LiFi Internet Harald Haas

I would like to demonstrate
for the first time in public

that it is possible to transmit a video

from a standard off-the-shelf LED lamp

to a solar cell with a laptop
acting as a receiver.

There is no Wi-Fi involved,
it’s just light.

And you may wonder, what’s the point?

And the point is this:

There will be a massive
extension of the Internet

to close the digital divide,

and also to allow for what we call
“The Internet of Things” –

tens of billions of devices
connected to the Internet.

In my view, such an extension
of the Internet can only work

if it’s almost energy-neutral.

This means we need to use existing
infrastructure as much as possible.

And this is where the solar cell
and the LED come in.

I demonstrated for the first time,

at TED in 2011,

Li-Fi, or Light Fidelity.

Li-Fi uses off-the-shelf LEDs
to transmit data incredibly fast,

and also in a safe and secure manner.

Data is transported by the light,

encoded in subtle changes
of the brightness.

If we look around,
we have many LEDs around us,

so there’s a rich infrastructure
of Li-Fi transmitters around us.

But so far, we have been using
special devices – small photo detectors,

to receive the information
encoded in the data.

I wanted to find a way to also use
existing infrastructure

to receive data from our Li-Fi lights.

And this is why I have been looking into
solar cells and solar panels.

A solar cell absorbs light
and converts it into electrical energy.

This is why we can use a solar cell
to charge our mobile phone.

But now we need to remember

that the data is encoded in subtle changes
of the brightness of the LED,

so if the incoming light fluctuates,

so does the energy harvested
from the solar cell.

This means we have
a principal mechanism in place

to receive information from the light
and by the solar cell,

because the fluctuations
of the energy harvested

correspond to the data transmitted.

Of course the question is:

can we receive very fast and subtle
changes of the brightness,

such as the ones transmitted
by our LED lights?

And the answer to that is yes, we can.

We have shown in the lab

that we can receive up to 50
megabytes per second

from a standard, off-the-shelf solar cell.

And this is faster than most
broadband connections these days.

Now let me show you in practice.

In this box is a standard,
off-the-shelf LED lamp.

This is a standard,
off-the-shelf solar cell;

it is connected to the laptop.

And also we have an instrument here

to visualize the energy
we harvest from the solar cell.

And this instrument shows
something at the moment.

This is because the solar cell already
harvests light from the ambient light.

Now what I would like to do first
is switch on the light,

and I’ll simply, only switch on the light,

for a moment,

and what you’ll notice is that
the instrument jumps to the right.

So the solar cell, for a moment,

is harvesting energy
from this artificial light source.

If I turn it off, we see it drops.

I turn it on …

So we harvest energy with the solar cell.

But next I would like to activate
the streaming of the video.

And I’ve done this
by pressing this button.

So now this LED lamp here
is streaming a video

by changing the brightness of the LED
in a very subtle way,

and in a way that you can’t
recognize with your eye,

because the changes
are too fast to recognize.

But in order to prove the point,

I can block the light of the solar cell.

So first you notice
the energy harvesting drops

and the video stops as well.

If I remove the blockage,
the video will restart.

(Applause)

And I can repeat that.

So we stop the transmission of the video
and energy harvesting stops as well.

So that is to show that the solar cell
acts as a receiver.

But now imagine that this LED lamp
is a street light, and there’s fog.

And so I want to simulate fog,

and that’s why I brought
a handkerchief with me.

(Laughter)

And let me put the handkerchief
over the solar cell.

First you notice

the energy harvested drops, as expected,

but now the video still continues.

This means, despite the blockage,

there’s sufficient light coming through
the handkerchief to the solar cell,

so that the solar cell is able to decode
and stream that information,

in this case, a high-definition video.

What’s really important here is that
a solar cell has become a receiver

for high-speed wireless signals
encoded in light,

while it maintains its primary function
as an energy-harvesting device.

That’s why it is possible

to use existing solar cells
on the roof of a hut

to act as a broadband receiver

from a laser station on a close by hill,
or indeed, lamp post.

And It really doesn’t matter
where the beam hits the solar cell.

And the same is true

for translucent solar cells
integrated into windows,

solar cells integrated
into street furniture,

or indeed, solar cells integrated
into these billions of devices

that will form the Internet of Things.

Because simply,

we don’t want to charge
these devices regularly,

or worse, replace the batteries
every few months.

As I said to you,

this is the first time
I’ve shown this in public.

It’s very much a lab demonstration,

a prototype.

But my team and I are confident
that we can take this to market

within the next two to three years.

And we hope we will be able to contribute
to closing the digital divide,

and also contribute

to connecting all these billions
of devices to the Internet.

And all of this without causing

a massive explosion
of energy consumption –

because of the solar cells,
quite the opposite.

Thank you.

(Applause)

我想
首次公开演示

,可以将视频

从标准的现成 LED 灯

传输到太阳能电池,笔记本电脑
充当接收器。

不涉及 Wi-Fi
,只是很轻。

你可能想知道,这有什么意义?

重点是

:互联网将大规模
扩展,

以缩小数字鸿沟,

并允许我们所谓的
“物联网”——

数百亿台设备
连接到互联网。

在我看来,
互联网的这种扩展

只有在几乎是能源中性的情况下才能发挥作用。

这意味着我们需要尽可能多地使用现有的
基础设施。

这就是太阳能电池
和 LED 的用武之地。

在 2011 年的 TED 上首次展示了

Li-Fi 或 Light Fidelity。

Li-Fi 使用现成的 LED
以令人难以置信的速度

和安全可靠的方式传输数据。

数据由光传输,

编码
为亮度的细微变化。

如果我们环顾四周,
我们周围有许多 LED,因此我们周围

有丰富
的 Li-Fi 发射器基础设施。

但到目前为止,我们一直在使用
特殊设备——小型光电探测器,

来接收
编码在数据中的信息。

我想找到一种方法来使用
现有的基础设施

从我们的 Li-Fi 灯接收数据。

这就是为什么我一直在研究
太阳能电池和太阳能电池板。

太阳能电池吸收光
并将其转化为电能。

这就是为什么我们可以使用太阳能电池
为手机充电的原因。

但现在我们需要记住

,数据是在
LED 亮度的细微变化中编码的,

所以如果入射光波动,

从太阳能电池收集的能量也会波动。

这意味着我们有
一个主要的机制

来接收来自
光和太阳能电池的信息,

因为
收集的能量的波动与

传输的数据相对应。

当然,问题是:

我们能否接收到非常快速和微妙
的亮度变化,

比如
我们的 LED 灯所传输的亮度变化?

答案是肯定的,我们可以。

我们已经在实验室中展示

了我们可以从标准的现成太阳能电池接收高达 50
兆字节/秒的数据

这比当今大多数
宽带连接都要快。

现在让我在实践中向您展示。

在这个盒子里有一个标准的、
现成的 LED 灯。

这是一种标准
的现成太阳能电池;

它连接到笔记本电脑。

而且我们这里还有一个仪器

可以可视化
我们从太阳能电池中获得的能量。

而这个仪器此刻显示了
一些东西。

这是因为太阳能电池已经
从环境光中获取光。

现在我要做的首先
是开灯

,我只是开灯,

一会儿

,你会
注意到仪器向右跳。

因此,太阳能电池暂时

从这种人造光源中获取能量。

如果我关闭它,我们会看到它下降。

我打开它……

所以我们用太阳能电池收集能量。

但接下来我想
激活视频流。

我通过按此按钮完成了此
操作。

所以现在这里的这个 LED 灯
正在

通过
以一种非常微妙的方式改变 LED 的亮度来播放视频,

并且以一种你无法
用肉眼识别的方式,

因为
变化太快而无法识别。

但为了证明这一点,

我可以挡住太阳能电池的光。

所以首先你会
注意到能量收集下降

,视频也停止了。

如果我移除阻塞
,视频将重新启动。

(掌声)

我可以重复一遍。

所以我们停止了视频的传输
,能量收集也停止了。

这表明太阳能电池
充当接收器。

但是现在想象一下,这个 LED 灯
是路灯,而且有雾。

所以我想模拟雾

,这就是
我带手帕的原因。

(笑声

) 让我把手帕
放在太阳能电池上。

首先,您注意到

所收集的能量如预期的那样下降,

但现在视频仍在继续。

这意味着,尽管有遮挡,

仍有足够的光线
通过手帕到达太阳能电池,

因此太阳能电池能够解码
和传输该信息,

在这种情况下,是高清视频。

这里真正重要的是
,太阳能电池已成为光编码

高速无线信号的接收器

同时它仍保持其
作为能量收集设备的主要功能。

这就是为什么

可以使用
小屋屋顶上的现有太阳能电池

作为靠近山丘或灯柱上的激光站的宽带接收器
的原因。

光束击中太阳能电池的位置真的无关紧要。

集成到窗户中的半透明

太阳能电池、集成
到街道家具中

的太阳能电池,或者实际上集成

将形成物联网的数十亿设备中的太阳能电池也是如此。

因为简单地说,

我们不想
定期为这些设备充电,

或者更糟糕的是,
每隔几个月更换一次电池。

正如我对你说的,

这是我第一次
公开展示这个。

这在很大程度上是一个实验室演示,

一个原型。

但我和我的团队有信心

在未来两到三年内将其推向市场。

我们希望我们能够
为缩小数字鸿沟

做出贡献,并

为将所有这些数
十亿设备连接到互联网做出贡献。

所有这一切都没有引起

能源消耗的大规模爆炸——

因为太阳能电池,
恰恰相反。

谢谢你。

(掌声)