How do solar panels work Richard Komp

The Earth intercepts a lot of solar power:

173 thousand terawatts.

That’s ten thousand times more power
than the planet’s population uses.

So is it possible that one day

the world could be completely
reliant on solar energy?

To answer that question,

we first need to examine how solar panels
convert solar energy to electrical energy.

Solar panels are made up of smaller units
called solar cells.

The most common solar cells
are made from silicon,

a semiconductor that is the second
most abundant element on Earth.

In a solar cell,

crystalline silicon is sandwiched
between conductive layers.

Each silicon atom is connected
to its neighbors by four strong bonds,

which keep the electrons in place
so no current can flow.

Here’s the key:

a silicon solar cell uses
two different layers of silicon.

An n-type silicon has extra electrons,

and p-type silicon has extra spaces
for electrons, called holes.

Where the two types of silicon meet,

electrons can wander across
the p/n junction,

leaving a positive charge on one side

and creating negative charge on the other.

You can think of light
as the flow of tiny particles

called photons,

shooting out from the Sun.

When one of these photons strikes
the silicon cell with enough energy,

it can knock an electron from its bond,
leaving a hole.

The negatively charged electron and
location of the positively charged hole

are now free to move around.

But because of the electric field
at the p/n junction,

they’ll only go one way.

The electron is drawn to the n-side,

while the hole is drawn to the p-side.

The mobile electrons are collected by
thin metal fingers at the top of the cell.

From there, they flow through
an external circuit,

doing electrical work,

like powering a lightbulb,

before returning through the conductive
aluminum sheet on the back.

Each silicon cell only puts out
half a volt,

but you can string them
together in modules to get more power.

Twelve photovoltaic cells are enough
to charge a cellphone,

while it takes many modules
to power an entire house.

Electrons are the only moving parts
in a solar cell,

and they all go back where they came from.

There’s nothing to get worn out
or used up,

so solar cells can last for decades.

So what’s stopping us from being
completely reliant on solar power?

There are political factors at play,

not to mention businesses that lobby
to maintain the status quo.

But for now, let’s focus on the physical
and logistical challenges,

and the most obvious of those

is that solar energy
is unevenly distributed across the planet.

Some areas are sunnier than others.

It’s also inconsistent.

Less solar energy is available
on cloudy days or at night.

So a total reliance would require

efficient ways to get electricity
from sunny spots to cloudy ones,

and effective storage of energy.

The efficiency of the cell itself
is a challenge, too.

If sunlight is reflected
instead of absorbed,

or if dislodged electrons fall back into
a hole before going through the circuit,

that photon’s energy is lost.

The most efficient solar cell yet

still only converts 46% of
the available sunlight to electricity,

and most commercial systems are currently
15-20% efficient.

In spite of these limitations,

it actually would be possible

to power the entire world
with today’s solar technology.

We’d need the funding
to build the infrastructure

and a good deal of space.

Estimates range from tens
to hundreds of thousands of square miles,

which seems like a lot,

but the Sahara Desert alone is over
3 million square miles in area.

Meanwhile, solar cells are getting
better, cheaper,

and are competing
with electricity from the grid.

And innovations, like floating solar farms,
may change the landscape entirely.

Thought experiments aside,

there’s the fact
that over a billion people

don’t have access
to a reliable electric grid,

especially in developing countries,

many of which are sunny.

So in places like that,

solar energy is already much cheaper
and safer than available alternatives,

like kerosene.

For say, Finland or Seattle, though,

effective solar energy
may still be a little way off.

地球截获了大量太阳能:

17.3 万太瓦。


比地球上的人口使用的能量多一万倍。

那么有没有可能有

一天世界会完全
依赖太阳能呢?

要回答这个问题,

我们首先需要研究太阳能电池板如何
将太阳能转化为电能。

太阳能电池板由称为太阳能电池的较小单元组成

最常见的太阳能电池
由硅制成,硅是

一种半导体,是
地球上第二丰富的元素。

在太阳能电池中,

晶体硅夹
在导电层之间。

每个硅原子
通过四个强键与其相邻原子相连,这些键

将电子保持在原位,
因此没有电流可以流动。

这是关键

:硅太阳能电池使用
两个不同的硅层。

n 型硅有额外的电子,

而 p 型硅有额外
的电子空间,称为空穴。

在两种类型的硅相遇的地方,

电子可以
穿过 p/n 结,

在一侧留下正电荷,

在另一侧产生负电荷。

您可以将光
视为

从太阳射出的称为光子的微小粒子流。

当其中一个光子
以足够的能量撞击硅电池时,

它可以将一个电子从其键中敲出,
留下一个空穴。

带负电的电子和
带正电的空穴

的位置现在可以自由移动。

但由于
p/n 结处的电场,

它们只会走一条路。

电子被吸引到 n 侧,

而空穴被吸引到 p 侧。

移动电子由
电池顶部的薄金属指收集。

从那里,它们流过
一个外部电路,

做电气工作,

比如给灯泡供电,

然后通过背面的导电
铝板返回。

每个硅电池仅输出
半伏特,

但您可以将它们串联
成模块以获得更多功率。

12 个光伏电池足以
为手机充电,


要为整个房子供电则需要许多模块。

电子是太阳能电池中唯一的运动部件

,它们都会回到它们来自的地方。

没有任何东西可以磨损
或用完,

因此太阳能电池可以使用数十年。

那么是什么阻止我们
完全依赖太阳能呢?

有政治因素在起作用,

更不用说
游说维持现状的企业了。

但现在,让我们关注物理
和后勤挑战,

其中最明显的

是太阳能
在地球上分布不均。

有些地区比其他地区阳光充足。

也是不一致的。

阴天或夜间可用的太阳能较少。

因此,完全依赖需要

有效的方法将电力
从阳光充足的地方输送到多云的地方,

并有效地储存能量。

电池本身的效率
也是一个挑战。

如果阳光被反射
而不是被吸收,

或者如果脱离的电子
在通过电路之前落回孔中,

那么光子的能量就会丢失。

最高效的太阳能电池

仍然只能将 46%
的可用阳光转化为电能,

而大多数商业系统目前的
效率只有 15-20%。

尽管有这些限制,

但实际上有可能

用今天的太阳能技术为整个世界供电。

我们需要资金
来建设基础设施

和大量空间。

估计范围从数万
到数十万平方英里,

这似乎很多,

但仅撒哈拉沙漠就有超过
300 万平方英里的面积。

与此同时,太阳能电池变得
更好、更便宜,

并且正在
与电网的电力竞争。

而浮动太阳能农场等创新
可能会彻底改变景观。

除了思想实验之外,

还有一个事实
是,超过 10 亿人

无法
使用可靠的电网,

尤其是在

许多阳光明媚的发展中国家。

所以在这样的地方,

太阳能已经
比可用的替代品(如煤油)便宜得多,也更安全

比如说,芬兰或西雅图,然而,

有效的太阳能
可能还有一段路要走。