Lessons from a solar storm chaser Miho Janvier

It is almost the end of the winter,

and you’ve woken up to a cold house,

which is weird, because
you left the heater on all night.

You turn on the light.

It’s not working.

Actually, the coffee maker, the TV –
none of them are working.

Life outside also seems to have stopped.

There are no schools,

most of the businesses are shut,

and there are no working trains.

This is not the opening scene
of a zombie apocalypse movie.

This is what happened in March 1989
in the Canadian province of Quebec,

when the power grid lost power.

The culprit?

A solar storm.

Solar storms are giant clouds of particles

escaping from the Sun from time to time,

and a constant reminder that we live
in the neighborhood of an active star.

And I, as a solar physicist,

I have a tremendous chance
to study these solar storms.

But you see, “solar storm chaser”

is not just a cool title.

My research helps to understand
where they come from,

how they behave

and, in the long run,

aims to mitigate their effects
on human societies,

which I’ll get to in a second.

At the beginning of the space
exploration age 50 years ago only,

the probes we sent in space

revealed that the planets
in our Solar System

constantly bathe in a stream of particles
that are coming from the Sun

and that we call the solar wind.

And in the same way that global wind
patterns here on Earth

can be affected by hurricanes,

the solar wind is sometimes
affected by solar storms

that I like to call “space hurricanes.”

When they arrive at planets,

they can perturb the space environment,

which in turn creates
the northern or southern lights,

for example, here on Earth,

but also Saturn

and also Jupiter.

Luckily, here on Earth,

we are protected
by our planet’s natural shield,

a magnetic bubble that we call
the magnetosphere

and that you can see here
on the right side.

Nonetheless, solar storms
can still be responsible

for disrupting satellite
telecommunications and operations,

for disrupting navigation
systems, such as GPS,

as well as electric power transmission.

All of these are technologies
on which us humans rely more and more.

I mean, imagine if you woke up tomorrow
without a working cell phone –

no internet on it,

which means no social media.

I mean, to me that would be worse
than the zombie apocalypse.

(Laughter)

By constantly monitoring the Sun, though,

we now know where
the solar storms come from.

They come from regions of the Sun

where a tremendous amount
of energy is being stored.

You have an example here,

as a complex structure
hanging above the solar surface,

just on the verge of erupting.

Unfortunately, we cannot send probes

in the scorching hot
atmosphere of the Sun,

where temperatures can rise
up to around 10 million degrees Kelvin.

So what I do is I use computer simulations

in order to analyze but also to predict
the behavior of these storms

when they’re just born at the Sun.

This is only one part
of the story, though.

When these solar storms
are moving in space,

some of them will inevitably
encounter space probes

that we humans have sent
in order to explore other worlds.

What I mean by other worlds is,
for example, planets,

such as Venus or Mercury,

but also objects, such as comets.

And while these space probes
have been made

for different scientific endeavors,

they can also act like tiny
cosmic meteorological stations

and monitor the evolution
of these space storms.

So I, with a group of researchers,
gather and analyze this data

coming from different
locations of the Solar System.

And by doing so, my research
shows that, actually,

solar storms have a generic shape,

and that this shape evolves
as solar storms move away from the Sun.

And you know what?

This is key for building tools
to predict space weather.

I would like to leave you
with this beautiful image.

This is us here on Earth,

this pale blue dot.

And while I study the Sun
and its storms every day,

I will always have a deep love
for this beautiful planet –

a pale blue dot indeed,

but a pale blue dot
with an invisible magnetic shield

that helps to protect us.

Thank you.

(Applause)

冬天快结束了

,你醒来发现一个寒冷的房子,

这很奇怪,因为
你整晚都没有开暖气。

你打开灯。

它不工作。

实际上,咖啡机、电视——
它们都没有工作。

外面的生活似乎也停止了。

没有学校,

大部分企业都关门了,

也没有运行的火车。

这不是
僵尸启示录电影的开场。

这就是 1989 年 3 月
在加拿大魁北克省发生的情况,

当时电网断电。

罪魁祸首?

太阳风暴。

太阳风暴是不时逃离太阳的巨大粒子云

,不断提醒我们生活
在一颗活跃的恒星附近。

而我,作为一名太阳物理学家,

我有很大的
机会研究这些太阳风暴。

但是你看,“太阳风暴追逐者

”不仅仅是一个很酷的标题。

我的研究有助于了解
它们来自哪里

,它们的行为方式

,从长远来看,

旨在减轻它们对人类社会的影响

,我稍后会谈到。

仅在 50 年前的太空探索时代开始时,

我们在太空中发送的探测器

显示,我们太阳系中的行星

不断沐浴在来自太阳的粒子流

中,我们称之为太阳风。

就像
地球上的全球风模式

会受到飓风的影响一样

,太阳风有时也会
受到

我喜欢称之为“太空飓风”的太阳风暴的影响。

当它们到达行星时,

它们可以扰乱太空环境,

从而
产生北极光或南极光,

例如,在地球上,

还有土星

和木星。

幸运的是,在地球上,

我们受到地球天然屏障的保护,这

是一个我们称之为磁层的磁泡

,你可以
在右侧看到它。

尽管如此,太阳
风暴仍然会

破坏卫星
通信和运营

,破坏
GPS 等导航系统

以及电力传输。

所有这些都是
我们人类越来越依赖的技术。

我的意思是,想象一下如果你明天醒来时
没有一部可以工作的手机——

没有互联网,

这意味着没有社交媒体。

我的意思是,对我来说,这
比僵尸启示录还要糟糕。

(笑声)

不过,通过不断监测太阳,

我们现在
知道太阳风暴来自哪里。

它们来自

储存大量能量的太阳区域。

你有一个例子,

作为一个
悬在太阳表面上方的复杂结构,

就在爆发的边缘。

不幸的是,我们无法

在太阳灼热的
大气中发送探测器,

那里的温度可能会上
升到大约 1000 万开氏度。

所以我所做的是使用计算机

模拟来分析和预测
这些风暴

在太阳刚刚诞生时的行为。

不过,这只是
故事的一部分。

当这些太阳风暴
在太空中移动时,

其中一些不可避免地会
遇到

我们人类
为了探索其他世界而发送的太空探测器。

我所说的其他世界是指
行星,

例如金星或水星,

但也包括物体,例如彗星。

虽然这些太空
探测器是

为不同的科学努力而制造的,

但它们也可以像微型
宇宙

气象站一样监测
这些太空风暴的演变。

所以我和一群研究人员一起
收集和分析

来自
太阳系不同位置的数据。

通过这样做,我的研究
表明,实际上,

太阳风暴有一个通用的形状,

并且这种形状
随着太阳风暴远离太阳而演变。

你知道吗?

这是构建
预测太空天气的工具的关键。

我想把
这个美丽的形象留给你。

这就是地球上的我们,

这个淡蓝色的点。

当我每天研究太阳
和它的风暴时,

我将永远
热爱这颗美丽的星球——

确实是一个淡蓝色的圆点,

但它是一个带有隐形磁屏蔽的淡蓝色圆点

,有助于保护我们。

谢谢你。

(掌声)