The story of Oumuamua the first visitor from another star system Karen J. Meech

NASA’s always on the lookout
for possible asteroid collision hazards,

so the Pan-STARRS telescope
is scanning the sky every night.

Each morning, candidate objects
are examined by Pan-STARRS staff

and usually discovered to be no big deal.

But on October 19, 2017,

Pan-STARRS spotted an object
moving rapidly between the stars,

and this time the usual follow-up
measurements of position and speed

showed something completely different.

By October 22nd, we had enough data

to realize that this object
wasn’t from our solar system.

Holy cow.

That’s when I got the phone call,

the phone call that all solar system
astronomers are waiting for.

Let me tell you how exciting this was.

(Laughter)

NASA’s been expecting to see
an interstellar comet

pass through the solar system
since the 1970s,

but until now, we’d never seen anything.

Our own solar system is huge,

so even getting a package
from the nearest star system

4.4 light years away

would take over 50,000 years.

So this is a really big deal.

The interstellar visitor
entered our solar system

from above the plane of the planets,

coming from the direction
of the constellation Lyra,

and it passed closest to the Sun
on September 9th,

passing inside the orbit of Mercury.

Now this isn’t a particularly
close approach or unusual distance.

It’s just much easier
to see objects close by.

On October 14th,

before we discovered it, it made
its closest approach to the Earth,

within about 15 million miles.

This is really close
by astronomical standards.

Now rather than call this
by its unwieldy catalog name,

we briefly called it “Rama,”

after the cylindrical spacecraft
that passed through the solar system

in Arthur C. Clarke’s classic
science fiction story in 1973.

But this wasn’t quite right either,

so in honor of it being discovered
by a telescope in Hawaii,

we consulted two experts
on Hawaiian culture –

a Hawaiian navigator and a linguist –

to propose a name.

And they suggested “‘Oumuamua,”

which means scout or messenger
from the distant past reaching out to us.

Now this discovery
was important for many reasons,

but to me the most significant
is for what ‘Oumuamua can tell us

about the past of our solar system.

The process of the birth of a new solar
system and the growth of planets

can be a violent and messy business.

Leftover icy and rocky debris
gets ejected from the new solar system

as the giant planets migrate
through the dusty disk

out of which they’re formed.

Now have you ever felt an emotional chill,

something that’s so exciting
that a shiver runs up and down your spine?

Or something that’s
very emotionally moving?

Well this was it for me.

This was my wow moment.

We actually had a piece of material
from another solar system

coming close enough for us to observe.

So what would you like to know
about ‘Oumuamua,

the very first visitor
from another star system?

Well, I could think of a million things,

but there’s what you want
and what you can have,

and ‘Oumuamua was moving away
and fading very rapidly.

In the span of about a week,

it had dropped in brightness
by a factor of [10].

So this is about all the time
we were going to have

to study it easily.

So we had to distill the process
of getting telescope time –

normally a very competitive,
peer-reviewed proposal process

that can take up to months –

down to less than a few days.

So began a “polite”
competition for resources.

OK, let me not mince words.
It was a fierce battle.

We dropped everything,

working around the clock,

trying to craft
perfectly crafted proposal words

to send to the observatory directors.

Well, good news. We got the time.

Now, from a perfectly
selfish point of view,

the first thing we might like to know
is how massive ‘Oumuamua is.

Because after all,
it passed very close to the Earth,

and we didn’t know about it
until afterwards.

How bad would this have been
had it not missed the Earth?

Well, the impact energy

depends on the square
of the velocity times its mass,

and the mass depends
on how big it is and what it’s made of.

So how big is ‘Oumuamua,
and what’s its shape?

Well, we can get this from its brightness.

Now, if you don’t believe me,
think of comparing the brightness

of a firefly in your backyard

to the navigation lights
on a distant airplane.

You know the airplane is much brighter –

it just appears faint
because it’s so far away.

We’re also going to need to know

how reflective
the surface of ‘Oumuamua is,

and we don’t have any clue,

but it’s reasonable to assume
it’s very similar to small asteroids

and comets in our solar system,

or in technical terms,

something between the reflectivity
of charcoal and wet sand.

Nowadays, most of the big telescopes
are used in what’s called a service mode,

meaning we have to carefully develop
all the instructions

and send them to the telescope operator,

and then anxiously wait
for the data to come back,

praying to the weather gods.

Now I bet most of you don’t have careers

that critically depend on whether or not
it’s cloudy last night.

Well, we weren’t going to get
any second chances here.

Because the weather was great,
‘Oumuamua decided not to be.

Its brightness wasn’t constant.

Now here we see ‘Oumuamua
racing between the stars.

It’s centered in the middle.

The stars are trailed out because
the telescope is following its motion.

It started faint and then it got brighter,
fainter, brighter, and fainter again,

as sunlight is reflected off
of four sides of an oblong object.

The extreme brightness change

led us to an unbelievable
conclusion about its shape.

As shown in this artist’s impression,

‘Oumuamua is apparently
very long and narrow,

with an axis ratio of about 10 to one.

Assuming it’s dark,
this means it’s about half a mile long.

Nothing else in our
solar system looks like this.

We only have a handful of objects
that even have an axis ratio

bigger than five to one.

So we don’t know how this forms,

but it may be part of its birth process
in its home solar system.

‘Oumuamua was varying in brightness
every 7.34 hours,

or so we thought.

As more data started
to come in from other teams,

they were reporting different numbers.

Why is it the more
we learn about something,

the harder it gets to interpret?

Well, it turns out that ‘Oumuamua
is not rotating in a simple way.

It’s wobbling like a top.

So while it is rotating
around its short axis,

it’s also rolling around the long axis

and nodding up and down.

This very energetic, excited motion

is almost certainly the result
of it being violently tossed

out of its home solar system.

Now how we interpret the shape
from its brightness

depends very critically
on how it’s spinning,

so now we have to rethink
what it may look like,

and as shown in this beautiful painting
by space artist Bill Hartmann,

we think that ‘Oumuamua
may be more of a flattened oval.

So let’s get back to the energetics.

What is it made of?

Well, ideally we would love
to have a piece of ‘Oumuamua

into the laboratory,
so we could study it in detail.

But since even private industry
can’t manage to launch

a spacecraft within a week

to something like this,

astronomers have to rely
on remote observations.

So astronomers will look at how the light
interacts with the surface.

Some colors may get absorbed,
giving it a chemical fingerprint,

whereas other colors may not.

On the other hand, some substances
may just reflect more blue

or red light efficiently.

In the case of ‘Oumuamua,
it reflected more red light,

making it look very much like the organic
rich surface of the comet recently visited

by the Rosetta spacecraft.

But not everything that looks reddish
has the same composition.

In fact, minerals that have
tiny little bits of iron in the surface

can also look red,

as does the dark side
of Saturn’s moon Iapetus,

shown in these images
from the Cassini spacecraft.

Nickel-iron meteorites,
in other words, metal,

can also look red.

So while we don’t know
what’s on the surface,

we know even less
about what’s on the inside.

However, we do know
that it must at least be strong enough

to not fly apart as it rotates,

so it probably has a density
similar to that of rocky asteroids;

perhaps even denser, like metal.

Well, at the very least,
I want to show you

one of the beautiful
color images that we got

from one of the ground-based telescopes.

All right, I admit,
it’s not all that spectacular.

(Laughter)

We just don’t have the resolution.

Even Hubble Space Telescope

doesn’t present a much better view.

But the importance of the Hubble data
was not because of the images,

but because it extended
our observations out

to two and a half months
from the discovery,

meaning we get more positions
along the orbit,

which will hopefully let us figure out
where ‘Oumuamua came from.

So what exactly is ‘Oumuamua?

We firmly believe it’s likely to be
a leftover archaeological remnant

from the process of the birth
of another planetary system,

some celestial driftwood.

Some scientists think
that maybe ‘Oumuamua formed

very close to a star
that was much denser than our own,

and the star’s tidal forces
shredded planetary material

early in the solar system’s history.

Still others suggest that maybe
this is something that formed

during the death throes of a star,

perhaps during a supernova explosion,

as planetary material got shredded.

Whatever it is, we believe
it’s a natural object,

but we can’t actually prove
that it’s not something artificial.

The color, the strange shape,
the tumbling motion

could all have other explanations.

Now while we don’t believe
this is alien technology,

why not do the obvious experiment
and search for a radio signal?

That’s exactly what
the Breakthrough Listen project did,

but so far, ‘Oumuamua
has remained completely quiet.

Now could we send
a spacecraft to ‘Oumuamua

and answer this question once and for all?

Yes, we do actually have the technology,

but it would be a long
and expensive voyage,

and we would get there so far from the Sun

that the final approach trajectory
would be very difficult.

So I think ‘Oumuamua probably
has many more things to teach us,

and in fact there might be
more surprises in store

as scientists such as myself
continue to work with the data.

More importantly,
I think this visitor from afar

has really brought home the point
that our solar system isn’t isolated.

We’re part of a much larger environment,

and in fact, we may even
be surrounded by interstellar visitors

and not even know it.

This unexpected gift

has perhaps raised more questions
than its provided answers,

but we were the first to say hello
to a visitor from another solar system.

Thank you.

(Applause)

Jedidah Isler: Thanks, Karen.

I of course enjoyed
that talk very much. Thank you.

As I recall, we found it
pretty late in its journey towards us.

Will future technologies like
the Large Synoptic Survey Telescope

help us detect these things sooner?

Karen Meech: Yeah. We’re hoping that
we’ll start to see a lot of these things,

and ideally, you’d love to find one
as it’s approaching the Sun,

because you want to have time
to do all the science,

or even more ideal,

you’d get a spacecraft ready to go,

parked somewhere in the L4 or L5 position,

somewhere near Earth,

so that when something comes by,
you can chase it.

JI: Awesome, thanks so much.
Let’s thank Karen again.

(Applause)

NASA 一直在
寻找可能的小行星碰撞危险,

因此 Pan-STARRS 望远镜
每晚都在扫描天空。

每天早上,
Pan-STARRS 的工作人员都会检查候选对象

,通常发现没什么大不了的。

但在 2017 年 10 月 19 日,

Pan-STARRS 发现了一个
在恒星之间快速移动的物体

,这一次通常
的位置和速度后续测量

显示出完全不同的东西。

到 10 月 22 日,我们有足够的数据

来意识到这个
物体不是来自我们的太阳系。

天啊。

就在那时我接到

了电话,所有太阳系
天文学家都在等待的电话。

让我告诉你这是多么令人兴奋。

(笑声) 自 1970 年代以来,

美国宇航局一直期待看到
一颗星际彗星

穿过太阳系

但直到现在,我们从未见过任何东西。

我们自己的太阳系很大,

所以即使
从 4.4 光年外最近的恒星系统获得一个包裹

也需要 50,000 多年。

所以这真的是一件大事。

星际访客

从行星平面上方进入我们的太阳系,来自

天琴座的方向,


于 9 月 9 日

通过水星轨道内最接近太阳的位置。

现在这不是一个特别
接近或不寻常的距离。


容易看到附近的物体。

10 月 14 日,

在我们发现它之前,
它距离地球最近,距离地球

约 1500 万英里。


与天文标准非常接近。

现在
,与其用笨拙的目录名称来

称呼它,我们将其简称为“拉玛”

,以 1973

年亚瑟·克拉克 (Arthur C. Clarke) 的经典
科幻小说中穿过太阳系的圆柱形宇宙飞船命名。

但这也不完全正确,

因此,为了纪念它
被夏威夷的望远镜发现,

我们咨询了两位
夏威夷文化专家——

一位夏威夷航海家和一位语言学家

——提出了一个名字。

他们建议使用“‘Oumuamua”

,意思是
来自遥远过去的侦察员或信使向我们伸出援手。

现在这个发现
很重要,原因有很多,

但对我来说,最
重要的是’Oumuamua 可以告诉

我们太阳系的过去。

新太阳系的诞生
和行星的生长过程

可能是一件充满暴力和混乱的事情。 当巨行星迁移穿过形成它们的尘埃盘时,

剩余的冰冷和岩石碎片
会从新的太阳系中弹出

现在你有没有感觉到一种情绪上的寒意,

一种如此令人兴奋的东西,
以至于你的脊椎上下颤抖?

或者是
非常感人的东西?

好吧,这就是给我的。

这是我惊叹的时刻。

实际上,我们有一块来自另一个太阳系的材料,

离我们足够近,可以观察到。

那么你想知道
关于’Oumuamua

,第一个
来自另一个星系的访客吗?

好吧,我可以想到一百万件事,

但有你想要的
和你可以拥有的,

而且’Oumuamua 正在消失
并迅速消失。

在大约一周的时间里,

它的亮度
下降了 [10] 倍。

所以这就是
我们必须

轻松学习它的所有时间。

所以我们不得不提炼
获得望远镜时间的过程——

通常是一个竞争激烈、
经过同行评审的提案过程

,可能需要几个月的时间——

缩短到几天之内。

于是开始了一场“礼貌”
的资源争夺。

好吧,我就不客气了。
这是一场激烈的战斗。

我们放弃了一切,

夜以继日地工作,

试图
制作完美的提案

词发送给天文台主任。

嗯,好消息。 我们有时间。

现在,从完全
自私的角度来看,

我们可能想知道的第一件事
是“Oumuamua”有多大。

因为毕竟
它经过的距离地球很近,

直到后来我们才知道

如果
它没有错过地球,这会有多糟糕?

嗯,冲击能量

取决于速度乘以质量的平方,

而质量
取决于它有多大以及它是由什么制成的。

那么’Oumuamua有多大,
它的形状是什么?

好吧,我们可以从它的亮度中得到这个。

现在,如果你不相信我,

不妨将你后院萤火虫的亮度与

远处飞机上的导航灯进行比较。

你知道这架飞机要亮得多——

它只是显得微弱,
因为它太远了。

我们还需要知道

‘Oumuamua 表面的反射率

,我们没有任何线索,

但可以合理地假设
它与

我们太阳系中的小型小行星和彗星非常相似,

或者在技术方面,

介于
木炭和湿沙子的反射率之间。

现在大部分的大望远镜
都是在所谓的服务模式下使用的,

也就是说我们要仔细制定
所有的指令

,发给望远镜操作员,

然后焦急地
等待数据回来,

祈求天气之神。

现在我敢打赌,你们中的大多数人都没有

严重依赖
昨晚是否多云的职业。

好吧,我们不会在
这里获得任何第二次机会。

因为天气很好,
‘Oumuamua 决定不去。

它的亮度不是恒定的。

现在我们在这里看到’Oumuamua
在群星之间竞速。

它位于中间。

星星被拖出是
因为望远镜正在跟随它的运动。

它开始微弱,然后变得越来越亮,越来越暗,越来越亮,又越来越
暗,

因为阳光从
一个长方形物体的四个侧面反射回来。

极端的亮度变化

使我们对它的形状得出了令人难以置信的
结论。

正如这位艺术家的印象所示,

‘Oumuamua 显然
很长很窄

,轴比约为 10 比 1。

假设它是黑暗的,
这意味着它大约有半英里长。

我们的太阳系中没有其他东西
看起来像这样。

我们只有少数几个
轴比

大于五比一的物体。

所以我们不知道它是如何形成的,

但它可能是它
在其所在太阳系中诞生过程的一部分。

‘Oumuamua 的亮度
每 7.34 小时就会变化一次,

或者我们认为是这样。

随着更多数据
开始来自其他团队,

他们报告了不同的数字。

为什么
我们对某件事了解得越多

,它就越难解释?

好吧,事实证明,‘Oumuamua
并没有以简单的方式旋转。

它像陀螺一样摇摆不定。

因此,当它
围绕短轴旋转时,

它也在围绕长轴滚动

并上下点头。

这种充满活力、激动的

运动几乎可以肯定
是它被猛烈地

抛出其所在的太阳系的结果。

现在我们如何
从它的亮度来解释形状

非常关键
地取决于它是如何旋转的,

所以现在我们必须重新考虑
它可能是什么样子

,正如太空艺术家比尔哈特曼的这幅美丽的画作所示

我们认为“Oumuamua
可能更 的扁平椭圆形。

所以让我们回到能量学。

它是什么做的?

好吧,理想情况下,我们
希望将一块“Oumuamua”

带入实验室,
这样我们就可以对其进行详细研究。

但由于即使是私营企业
也无法

在一周内发射出这样的航天器

天文学家不得不
依靠远程观测。

因此,天文学家将研究光如何
与表面相互作用。

有些颜色可能会被吸收,
从而产生化学指纹,

而其他颜色可能不会。

另一方面,某些物质
可能只是有效地反射更多的蓝光

或红光。

就’Oumuamua而言,
它反射了更多的红光,

使它看起来非常像罗塞塔号宇宙飞船
最近访问的彗星富含有机物的表面

但并非所有看起来微红的东西都
具有相同的成分。

事实上,在卡西尼号宇宙飞船拍摄的这些图像中显示,
表面含有少量铁的矿物

也可能看起来是红色的,

土星卫星 Iapetus 的暗面也是如此

镍铁陨石
,换句话说,金属,

也可以看起来是红色的。

因此,虽然我们不
知道表面是什么,


我们对内部的了解就更少了。

然而,我们确实
知道它至少必须足够坚固

,不会在旋转时飞散,

所以它的密度可能
与岩石小行星的密度相似;

也许更密集,像金属一样。

好吧,至少,
我想向您展示

我们

从其中一台地面望远镜获得的美丽彩色图像之一。

好吧,我承认,
这并不是那么壮观。

(笑声)

我们只是没有决心。

甚至哈勃太空望远镜

也没有提供更好的视野。

但哈勃数据的重要性
并不是因为图像,

而是因为它将
我们的观察时间延长到发现后

的两个半月

这意味着我们沿着轨道获得了更多的位置

这有望让我们弄清楚
“Oumuamua”在哪里 来自。

那么究竟什么是’Oumuamua?

我们坚信,它很可能

是另一个行星系统(

一些天体浮木)诞生过程中遗留下来的考古遗迹。

一些科学家认为
,Oumuamua 的形成可能

非常接近一颗
比我们自己密度大得多

的恒星,而这颗恒星的潮汐力

在太阳系历史的早期就将行星物质撕碎了。

还有一些人认为,这可能

在恒星垂死挣扎期间形成的,

也许是在超新星爆炸期间

,行星物质被切碎时形成的。

不管它是什么,我们相信
它是一个自然物体,

但我们实际上无法
证明它不是人造的。

颜色,奇怪的形状
,翻滚的动作

都可以有其他解释。

现在虽然我们不相信
这是外星技术,但

为什么不做明显的实验
并寻找无线电信号呢?


正是 Breakthrough Listen 项目所做的,

但到目前为止,‘Oumuamua
一直保持安静。

现在我们可以
向’Oumuamua 发送一艘宇宙飞船并一劳永逸地

回答这个问题吗?

是的,我们确实拥有这项技术,

但这将是一个漫长
而昂贵的航程,

而且我们会离太阳如此之远,

以至于最终的接近轨迹
将非常困难。

所以我认为‘Oumuamua 可能
还有更多的东西要教给我们

,事实上,

随着像我这样的科学家
继续使用这些数据,可能会有更多的惊喜。

更重要的是,
我认为这位远道而来的访客

真的让
我们明白了我们的太阳系并不是孤立的。

我们是更大环境的一部分

,事实上,我们甚至
可能被星际访客包围,

甚至不知道。

这个意想不到的

礼物可能引发的问题
比它提供的答案更多,

但我们是第一个向
来自另一个太阳系的访客打招呼的人。

谢谢你。

(掌声)

Jedidah Isler:谢谢,凯伦。

我当然
非常喜欢那次谈话。 谢谢你。

我记得,我们
在它接近我们的过程中发现它已经很晚了。

像大型天气观测望远镜这样的未来技术会

帮助我们更快地探测到这些东西吗?

凯伦·米奇:是的。 我们希望
我们会开始看到很多这样的东西

,理想情况下,你会喜欢在
它接近太阳时找到一个,

因为你想有
时间做所有的科学,

甚至更理想,

你会准备好一艘宇宙飞船,

停在 L4 或 L5 位置的

某个地方,靠近地球的某个地方,

这样当有东西经过时,
你可以追逐它。

JI:太棒了,非常感谢。
让我们再次感谢凯伦。

(掌声)