There may be extraterrestrial life in our solar system Augusto Carballido

Deep in our solar system,

a new era of space exploration
is unfolding.

Beneath the thick ice of Europa,

in the vapor plumes on Enceladus,

and within the methane lakes of Titan,

astrobiologists are on the hunt
for extraterrestrial life.

We’ve honed in on these three moons
because each is an ‘ocean world,’

an environment that contains
a liquid ocean–

and liquid can support
the formation of life.

Living organisms have to be able to grow,
reproduce, and feed themselves,

among other things.

All of those functions require the
formation of complex molecules

from more basic components.

Liquids such as water allow chemical
compounds to remain in suspension

instead of sinking under
the force of gravity.

This enables them to interact frequently
in a 3-dimensional space and,

in the right conditions,

go through chemical reactions that
lead to the formation of living matter.

That alone isn’t enough;

the small but complex biomolecules
that we’re familiar with

are sensitive to temperature—

too hot or cold, and they won’t mix.

Liquid water has an additional advantage

in that it’s relatively
temperature-stable,

meaning it can insulate molecules against
large shifts in heat.

On Earth, these and other conditions in
aquatic environments

may have supported the emergence
of life billions of years ago.

Tantalizingly, the same could be true
in other parts of our solar system,

like these three icy moons.

Europa, which is a moon of Jupiter,

is probably the most
intriguing ocean world.

Beneath a surface layer of ice thicker
than Mount Everest,

there exists a liquid ocean as much as
100 kilometers deep.

Astrobiologists think this hidden
ocean could harbor life.

Thanks to the Galileo probe,

we can deduce that its
potential salt content

is similar to that of some lakes on Earth.

But most of its characteristics will be a
mystery until we can explore it further.

Like Jupiter, Saturn also has moons that
might have the right conditions for life.

For instance– Enceladus is a tiny ball of
ice that’s small enough to nestle

within the surface area
of the Gulf of Mexico.

Similarly to Europa, it likely contains an
ocean deep under the ice.

But Enceladus also has geysers

that frequently vent water vapor and
tiny ice grains into space.

Astrobiologists are curious about whether
these geysers

are connected to the ocean below.

They hope to send a probe to test whether
the geysers’ plumes of vapor

contain life-enabling material
from that hidden sea.

Although it’s the best known substance
for nurturing life,

water isn’t necessarily the only medium
that can support living things.

Take Titan, Saturn’s largest moon,

which has a thick nitrogen atmosphere

containing methane and many other
organic molecules.

Its clouds condense and
rain onto Titan’s surface,

sustaining lakes and seas
full of liquid methane.

This compound’s particular chemistry means
it’s not as supportive a medium as water.

But, paired with the high quantities
of organic material

that also rain down from the sky,

these bodies of liquid methane could
possibly support unfamiliar life forms.

So what might indicate that life exists on
these or other worlds?

If it is out there, astrobiologists
speculate that it would be microscopic,

comparable to the bacteria
we have on earth.

This would make it difficult to directly
observe from a great distance,

so astrobiologists seek clues
called biosignatures.

Those may be cells, fossils, or mineral
traces left behind by living things.

And finding any biosignatures will be
challenging for many reasons.

One of the biggest concerns

is to make sure we sterilize our
probes extremely thoroughly.

Otherwise we could accidentally
contaminate ocean worlds

with Earth’s own bacteria,

which could destroy alien life.

Titan, Enceladus, and Europa

are just three of possibly many
ocean worlds that we could explore.

We already know of several other
candidates in our solar system,

including Jupiter’s moons Callisto and
Ganymede,

Neptune’s Triton, and even Pluto.

If there’s this much potential for life
to exist in our own tiny solar system,

what unimagined secrets might the
rest of the universe contain?

在我们的太阳系深处,

一个新的太空探索时代
正在展开。

在欧罗巴厚厚的冰层之下,

在土卫二的蒸汽羽流中

,在泰坦的甲烷湖中,

天体生物学家正在
寻找外星生命。

我们已经在这三个卫星上进行了磨练,
因为每个卫星都是一个“海洋世界”,

一个
包含液态海洋的环境——

而液体可以支持
生命的形成。 除其他外,

活的有机体必须能够生长
、繁殖和养活自己

所有这些功能都需要

从更基本的成分中形成复杂的分子。

水等液体允许
化合物保持悬浮状态,

而不是在
重力作用下下沉。

这使它们能够
在 3 维空间中频繁交互,

并在适当的条件

下进行化学反应,
从而形成生命物质。

仅此还不够; 我们熟悉

的小而复杂的生物分子

对温度很敏感——

太热或太冷,它们不会混合。

液态水还有一个额外的优势

,那就是它的
温度相对稳定,

这意味着它可以使分子免受
热量的大变化。

在地球上,水生环境中的这些和其他条件

可能支持了
数十亿年前生命的出现。

诱人的是,我们太阳系的其他部分也可能出现同样的情况

比如这三个冰冷的卫星。

木卫二是木星的卫星

,可能是最
有趣的海洋世界。

在比珠穆朗玛峰还厚的冰层之下

存在着深达 100 公里的液态海洋

天体生物学家认为这片隐藏的
海洋可能孕育生命。

多亏了伽利略探测器,

我们可以推断其
潜在的含盐量

与地球上某些湖泊的含盐量相似。

但在我们进一步探索之前,它的大部分特征都是一个
谜。

像木星一样,土星也有
可能有合适的生命条件的卫星。

例如,土卫二是一个小
冰球,小到可以安放

在墨西哥湾的表面区域
内。

与欧罗巴相似,它可能
在冰层深处有一个海洋。

但土卫二也有间歇泉

,经常将水蒸气和
微小的冰粒排放到太空中。

天体生物学家很好奇
这些间歇泉

是否与下方的海洋相连。

他们希望发送一个探测器来测试
间歇泉的蒸汽羽流是否

含有
来自隐藏海洋的生命物质。

虽然它是最有名
的滋养生命的物质,但

水不一定是
唯一可以支持生物的介质。

以土星最大的卫星土卫六为例,

它有厚厚的氮大气,

含有甲烷和许多其他
有机分子。

它的云层凝结并
在泰坦表面下雨,

维持着
充满液态甲烷的湖泊和海洋。

这种化合物的特殊化学性质意味着
它不像水那样具有支持性的介质。

但是,再加上从天而降的
大量有机物质

这些液态甲烷体
可能支持不熟悉的生命形式。

那么,什么可能表明生命存在于
这些或其他世界上呢?

如果它存在,天体生物学家
推测它将是微观的,

与我们地球上的细菌相当

这将使远距离直接观察变得困难

因此天体生物学家寻找称为生物印记的线索

这些可能是生物留下的细胞、化石或矿物
痕迹。

由于许多原因,找到任何生物特征都将
具有挑战性。

最大的担忧之一

是确保我们对
探头进行非常彻底的消毒。

否则,我们可能会意外地

用地球自身的细菌污染海洋世界,

从而摧毁外星生命。

土卫六、土卫二和欧罗巴

只是
我们可以探索的众多海洋世界中的三个。

我们已经知道
太阳系中的其他几个候选者,

包括木星的卫星卡利斯托和木
卫三、

海王星的海卫一,甚至冥王星。

如果
在我们自己的微小太阳系中存在这么大的生命潜力,

那么宇宙的其余部分可能包含哪些难以想象的秘密