Why dont we cover the desert with solar panels Dan Kwartler

Every day, the sands of the Sahara Desert
reach temperatures up to 80° Celsius.

Stretching over roughly
nine million square kilometers,

this massive desert receives about
22 million terawatt hours of energy

from the Sun every year.

That’s well over 100 times more energy
than humanity consumes annually.

So, could covering the desert with solar
panels solve our energy problems for good?

Solar panels work when light particles hit
their surface with enough energy

to knock electrons
out of their stable bonds.

On their journey back to stability,
these electrons produce electricity.

However, there’s a limit to how much power
panels can generate.

Solar panels can only interact
with certain wavelengths of light,

making it impossible to convert
over half the sunlight they receive.

And even light particles they can convert
often bounce off them

without ever hitting an electron.

But thanks to clever scientists
and engineers

and substantial government investment,

solar panels are generating
more electricity than ever.

Anti-reflective coatings and patterns
on the panels’ surface

create more opportunities for incoming
light particles to hit electrons.

These techniques have increased commercial
solar panel efficiency

from the low-teens to 25%,

with experimental models reaching
up to 47%.

What’s more, solar has gotten
89% cheaper over the last decade,

thanks in part to global supply chains
for other technologies

that use the same materials.

Together, these factors have
made solar power

the cheapest source of electricity
on Earth.

Countries including India, China,
Egypt, and the US,

have already taken
these new panels into the desert.

Their massive solar farms range
from 15 to 56 square kilometers,

and when the sun is high in the sky,

these plants can provide energy

for hundreds of thousands
of local residents.

But these farms also get
extremely hot.

Light that solar cells don’t convert
or reflect is absorbed as heat,

which reduces a panel’s efficiency.

And the cooling systems employed by many
farms can use huge amounts of energy

powering fans or moving water
to maintain optimal temperatures.

Even with these systems, solar panels
in the desert absorb far more heat

than the natural sandy environment.

This hasn’t been a problem
on the scale of existing solar farms.

But if we tried to cover the Sahara,

this effect could create massive changes
in the region’s climate.

Constructing solar farms already
disrupts local ecosystems,

but a plant of this scale could
dramatically transform

the desert landscape.

Thankfully, solar panels
aren’t our only option.

And some of the largest solar plants
in the world are trying a new approach:

giant mirrors.

Morocco’s Noor Power Plant,

which will eventually cover roughly
30 square kilometers of the Sahara,

is a concentrated solar power plant.

This design reflects light
onto a receiver,

which converts that energy to heat,
and then electricity.

These mirrors still create a dangerous
temperature shift for local wildlife,

but they have less potential
to transform the landscape.

And since it takes time for the materials
being heated to cool off,

these plants often continue producing
electricity past sunset.

Whether they use panels or mirrors,

industrial solar farms are often easy to
fit into existing energy infrastructure.

However, getting their electricity beyond
local power grids is much more difficult.

Some countries are working on ways to
connect electric grids across the globe.

And many farm store energy
in massive batteries,

or convert their electricity
into clean gas that can be used later.

But right now, these techniques are still
too expensive and inefficient to rely on.

Worse still, industrial renewables
can share some of the same problems

as fossil fuels,

relying on destructive mining operations
and carbon-emitting global supply chains.

Fortunately, solar can
exist on many scales,

from industrial solar farms
to smaller installations

that power individual buildings
and rural communities.

These projects can supplement energy use
or provide a passive source of energy

for regions off the grid.

And since solar panels rely
on a few simple components,

they’re quick to install
and relatively easy to update.

In fact, it’s this flexibility
that enabled solar

to become so cheap and ubiquitous
over the last decade.

So if we want to keep up with humanity’s
rising energy use,

we’ll need answers both big and small.

每天,撒哈拉沙漠的沙子
温度高达 80 摄氏度。 这片巨大的沙漠

绵延约
900 万平方公里,每年从太阳

接收约
2200 万太瓦时的能量


比人类每年消耗的能源多出 100 多倍。

那么,用太阳能电池板覆盖沙漠可以
解决我们的能源问题吗?

当轻粒子
以足够的能量撞击其表面

以将
电子从其稳定的键中敲出时,太阳能电池板就会起作用。

在恢复稳定的过程中,
这些电子会产生电能。

但是,可以产生多少电源板是有限度的

太阳能电池板只能
与某些波长的光相互作用

,因此无法转换
它们接收到的一半以上的阳光。

即使是它们可以转换的轻粒子,也
经常会从它们身上反弹

而不会碰到电子。

但是由于聪明的科学家
和工程师

以及大量的政府投资,

太阳能电池板产生
的电力比以往任何时候都多。 面板表面

的抗反射涂层和图案

为入射光粒子撞击电子创造了更多机会

这些技术已将商业
太阳能电池板的效率

从低至 10% 提高到 25%

,实验模型
高达 47%。

更重要的是,太阳能
在过去十年中便宜了 89%,

这部分归功于

使用相同材料的其他技术的全球供应链。

总之,这些因素
使太阳能

成为地球上最便宜的电力来源

印度、中国、
埃及和美国等

国家已经将
这些新面板带入了沙漠。

他们庞大的太阳能农场面积
从 15 到 56 平方公里不等

,当太阳高高在上时,

这些植物可以

为数
十万当地居民提供能源。

但这些农场也变得
非常热。

太阳能电池不转换
或反射的光被吸收为热量,

从而降低了面板的效率。

许多农场采用的冷却系统
可以使用大量能源

为风扇或流动的水提供动力,
以保持最佳温度。

即使有了这些系统,
沙漠中的太阳能电池板吸收的热量也

比天然沙质环境要多得多。

在现有太阳能农场的规模上,这不是问题。

但如果我们试图覆盖撒哈拉沙漠,

这种影响可能会
导致该地区气候发生巨大变化。

建造太阳能农场已经
破坏了当地的生态系统,

但这种规模的植物可以
极大地

改变沙漠景观。

值得庆幸的是,太阳能电池板
不是我们唯一的选择。

世界上一些最大的太阳能发电厂
正在尝试一种新方法:

巨型镜子。

摩洛哥的努尔发电厂

最终将覆盖大约
30 平方公里的撒哈拉沙漠,

是一座集中式太阳能发电厂。

这种设计将光反射
到接收器上,接收

器将能量转化为热能,
然后再转化为电能。

这些镜子仍然
给当地野生动物造成危险的温度变化,

但它们
改变景观的潜力较小。

而且由于被加热的材料需要时间
冷却下来,

这些工厂通常会在
日落之后继续发电。

无论他们使用面板还是镜子,

工业太阳能农场通常很容易
融入现有的能源基础设施。

然而,让他们的电力超越
当地电网要困难得多。

一些国家正在研究
连接全球电网的方法。

许多农场将能量储存
在大容量电池中,

或将其电能
转化为清洁气体以供日后使用。

但现在,这些技术仍然
过于昂贵且效率低下,无法依赖。

更糟糕的是,工业可再生能源
与化石燃料存在一些相同的问题

依赖于破坏性的采矿作业
和排放碳的全球供应链。

幸运的是,太阳能可以
以多种规模存在,

从工业太阳能农场
到为

单个建筑物
和农村社区供电的小型装置。

这些项目可以补充能源使用

为离网地区提供被动能源。

而且由于太阳能电池板依赖
于一些简单的组件,

因此它们安装快速
且相对容易更新。

事实上,正是这种灵活性
使太阳能

在过去十年变得如此便宜和无处不
在。

因此,如果我们想跟上人类
不断增长的能源使用,

我们将需要大大小小的答案。